



Apple Computer, Inc.
Technical Publications
July, 1999



QuickTime 4 Reference

For Macintosh and Windows

New Features of QuickTime Audio 663

C H A P T E R 2 0

QuickTime Audio 20Figure 20-0
Listing 20-0
Table 20-0

This chapter discusses new features of QuickTime audio. For information about
audio support and the uses of the Sound Manager, refer to Chapter 2 of Inside
Macintosh: Sound.

This chapter focuses on issues that are relevant to QuickTime. Note that Sound
Manager sources are now multi-platform, so that the same manager is available
on all platforms where QuickTime is available, and contains the same API and
features.

This chapter also discusses how QuickTime 3 handles compressed audio, in
addition to the two recent extensions defined for the SoundDescription sample
description record. The first extension is the addition of slope, intercept,
minClip, and maxClip parameters for audio. The second is the ability to store
data specific to a given audio decompressor in the SoundDescription record.

New Features of QuickTime Audio 20

QuickTime 3 automatically installs the latest version of the Sound Manager.

Multi-platform Support 20

The Sound Manager sources are now multi-platform, i.e., built for the Mac OS,
Windows 95 and NT, and any other platform that supports QuickTime. This
means the same Sound Manager software is available for each platform,
containing the same API and features.

C H A P T E R 2 0

QuickTime Audio

664 New Features of QuickTime Audio

Dealing with Endian Issues 20

Multi-platform support raises the issue of “endianness.” Basically, endian
conversion is treated as a compression conversion. Any non-native endian
format is required to be “decompressed” into the native format.

How QuickTime 3 Handles Compressed Audio 20

QuickTime 3 defines version 1 of the SoundDescription sample description
record. Note that for purposes of this discussion, a QuickTime sound sample
description chunk describes the format of a collection of audio samples.

The existing description is shown in Listing 20-1 for reference.

Listing 20-1 The original SoundDescription sample description

struct SoundDescription {
long descSize; /* total size of SoundDescription

including extra data */
long dataFormat; /* sound format */
long resvd1; /* reserved for apple use. set to zero */
short resvd2; /* reserved for apple use. set to zero */
short dataRefIndex;
short version; /* which version is this data */
short revlevel; /* what version of that codec did this */
long vendor; /* whose codec compressed this data */
short numChannels; /* number of channels of sound */
short sampleSize; /* number of bits per sample */
short compressionID; /* unused. set to zero. */
short packetSize; /* unused. set to zero. */
UnsignedFixed sampleRate; /* sample rate sound is captured at */

};
typedef struct SoundDescription SoundDescription;

Version 1 of this record includes four extra fields to store information about
compression ratios. It also defines how other extensions are added to the
SoundDescription record.

C H A P T E R 2 0

QuickTime Audio

New Features of QuickTime Audio 665

struct SoundDescriptionV1 {
// original fields
SoundDescription desc;
// fixed compression ratio information
unsigned long samplesPerPacket;
unsigned long bytesPerPacket;
unsigned long bytesPerFrame;
unsigned long bytesPerSample;
// additional atom-based fields --
// ([long size, long type, some data], repeat)

};

The version 1 sound description is a superset of the version 0 sound
description. The new fields are taken directly from the CompressionInfo
structure currently used by the Sound Manager to describe the compression
ratio of fixed ratio audio compression algorithms. They are described in detail
in Inside Macintosh: Sound. If these fields are not used, they are set to 0. File
readers only need to check to see if samplesPerPacket is 0. The fields have been
added to support compression algorithms which can be run at different
compression ratios and to support more generic parsing of QuickTime sound
tracks

IMPORTANT

It is necessary to know the compression ratio to rechunk or
flatten the media. In the past, the only way to know the
compression ratio was to directly query the audio
decompressor. If this process was running on a computer
without the decompressor (such as a server), it would not
have enough information to correctly rechunk the audio.s

All other additions to the SoundDescription record are made using QT atoms.
That means one or more atoms can be appended to the end of the
SoundDescription record using the standard [size, type] mechanism used
throughout the QuickTime movie resource architecture.

Extensions to the SoundDescription Record 20

Two extensions are defined to the SoundDescription record. The first is the
slope, intercept, minClip, and maxClip parameters for audio as defined in
Appendix D. This is represented as an atom of type siSlopeAndIntercept. The
contents of the atom are:

C H A P T E R 2 0

QuickTime Audio

666 New Features of QuickTime Audio

struct SoundSlopeAndInterceptRecord {
Float64 slope;
Float64 intercept;
Float64 minClip;
Float64 maxClip;

};
typedef struct SoundSlopeAndInterceptRecord SoundSlopeAndInterceptRecord;

The second extension is the ability to store data specific to a given audio
decompressor in the SoundDescription record. Some audio decompression
algorithms, such as Microsoft’s ADPCM, require a set of out-of-stream values to
configure the decompressor. These are stored in a siDecompressorSettings. The
contents of the siDecompressorSettings atom are dependent on the audio
decompressor. If the QuickTime movie was created from a WAVE (.WAV) or AVI
(.avi) file, the siDecompressorSettings atom is automatically created and set to
the contents of the WAVEFORMATEX structure from that file. In this case, the
siDecompressorSettings atom contains little-endian data.

At runtime, the contents of the type siSlopeAndIntercept and
siDecompressorSettings atoms are provided to the decompressor component
through the standard SetInfo mechanism of the Sound Manager. The
samplesPerPacket, bytesPerPacket, bytesPerFrame, and bytesPerSample fields
are also passed to the decompressor component via SetInfo in a
CompressionInfo structure with the siCompressionFactor selector.

Constants for Additional Audio Compression Formats 20

QuickTime 3 defines constants for several additional audio compression
formats. These include kFloat32Format and kFloat64Format for single and
double precision (i.e., big endian IEEE) floating-point audio. It also defines
'alaw' for aLaw audio. All DV audio from NTSC (format 60) DVC streams is
'dvca', regardless of the format of the data in the frame. In addition, a standard
mapping for audio formats present in the Windows Audio Compression
Manager is defined.

All ACM audio formats are defined with a 16-bit integer. These are mapped into
a QuickTime four-character code by putting 'ms' in the first two characters and
the ACM 16-bit value in the second two characters. So the Microsoft ADPCM
algorithm (ACM value of 1) has a QuickTime audio compression code of (('MS'
<< 16) | 1). This enables standard mapping of ACM audio into the QuickTime
movie format.

C H A P T E R 2 0

QuickTime Audio

New Features of QuickTime Audio 667

QuickTime 3 has built-in support to decompress the following additional audio
formats:

� single-precision floating point

� double-precision floating point

� Microsoft ADPCM (ACM code 1)

� Intel/DVI IMA (ACM code 7), DV

� aLaw

Both floating-point decompressors support the type siSlopeAndIntercept atom
to provide scaling and DC-offset support. QuickTime 3 has the ability to
compress the following additional audio formats:

� single-precision floating point

� double-precision floating point

� aLaw

QuickTime 3 correctly imports compressed audio from AVI (.avi) and WAVE
(.WAV) files. The AU file importer has also been enhanced to import aLaw, 8- and
16-bit uncompressed, and single- and double-precision floating point audio in
addition to the uLaw that it handled previously. A Sound Designer II file
importer has been added. An AU file exporter has been added which can
generate aLaw, uLaw, single and double precision floating point, and
uncompressed AU files. (Note that most other readers can only handle uLaw,
however).

DV Audio Decompressor Component 20

The Sound Manager includes a DV audio decompressor component. This
component, which works with Sound Manager version 3.3 or later, can
decompress DV audio in any of the formats supported by DV sources. These
formats are:

� 2 audio channels, 12-bit encoding, 32K samples per second

� 2 audio channels, 12-bit encoding, 44.1K samples per second

� 2 audio channels, 12-bit encoding, 48K samples per second

� 2 audio channels, 16-bit encoding, 32K samples per second

� 2 audio channels, 16-bit encoding, 44.1K samples per second

C H A P T E R 2 0

QuickTime Audio

668 Using QuickTime Audio

� 2 audio channels, 16-bit encoding, 48K samples per second

� 4 audio channels, 12-bit encoding, 32K samples per second

The file type for all DV audio formats is kDVAudioFormat.

Note that the DV audio decompressor component provides the ability to
decode audio data stored in a DVC stream.

Using QuickTime Audio 20

Creating a 16-bit, 22K Uncompressed WAVE File Using
QuickTime 3 20

The following is an example of how you can convert an 8-bit, 22K .wav file to a
16-bit, 22K IMAPCM .wav file using QuickTime 3.

While QuickTime can create WAVE files, it does not support creating
IMA-compressed WAVE files. It can play back WAVE files that contain
IMA-compressed audio.

To create a 16-bit 22k uncompressed WAVE file using QuickTime 3, you perform
the following steps:

1. Open an exporter.

ComponentInstance ci;
ci = OpenDefaultComponent(MovieExportType, kQTFileTypeWave);

2. Create a sound description for the audio format you want. If there are values
you don’t care about, you can leave them unspecified. In this example, the
number of channels is not indicated. The exporter will base the channel
count on the source movie.

SoundDescriptionHandle desc;

desc = (SoundDescriptionHandle)NewHandleClear(sizeof(SoundDescripion));
(**desc).descSize = sizeof(SoundDescription);

C H A P T E R 2 0

QuickTime Audio

Using QuickTime Audio 669

(**desc).sampleSize = 16;
(**desc).sampleRate = 22050L << 16;
(**desc).dataFormat = k16BitLittleEndianFormat;

3. Specify the export component in which format you want the audio.

MovieExportSetSampleDescription(ci, (SampleDescriptionHandle)desc,
SoundMediaType);

4. Perform the export operation.

ConvertMovieToFile(theMovie, nil, &outputFile, kQTFileTypeWave,
OSTypeConst('TVOD'), –1, nil, 0, ci);

5. After you have finished, dispose everything that you have created.

CloseComponent(ci);
DisposeHandle((Handle)desc);

C H A P T E R 2 0

QuickTime Audio

670 Using QuickTime Audio

