

C H A P T E R 2

2

S
ound M

anager

Sound Manager 2

This chapter describes the Sound Manager, the part of the Macintosh system software
that controls the production and manipulation of sounds on Macintosh computers. You
can use the Sound Manager to create a wide variety of sounds and to manipulate sounds
in many ways. The Sound Manager is also used by other parts of the Macintosh system
software that produce sounds, such as the Speech Manager and QuickTime.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, especially with the
portions of that chapter that describe the Macintosh sound architecture and the routines
related to sound output. That chapter shows how your application can play a sound
resource or a sound file synchronously (that is, with other processing suspended while
the sound plays).

You should read this chapter if you need a greater degree of control over sound output
than the routines described in that introductory chapter provide. For example, if you
want to play sounds asynchronously or to exercise very fine control over the process of
sound production, this chapter contains information you need.

This chapter begins by describing the capabilities of the Sound Manager and the role of
sound commands and sound channels in producing sound. Then it explains how you
can use the Sound Manager to

■ create and manage sound channels

■ obtain information about available sound features and sound channels

■ play notes and other sounds at various frequencies and volumes

■ play one or more sounds asynchronously

■ parse sound resources and sound files to obtain information about them

■ compress and expand sound data

■ use double buffers to bypass the normal play-from-disk routines

You’re not likely to use all of these capabilities in a single application. In general, you
should read the section “About the Sound Manager” and then turn to the parts of the
section “Using the Sound Manager” that describe the features you want to use in your
application. The section “Sound Storage Formats” beginning on page 2-73 explains in
detail the format of sound resources and sound files. You can find a complete reference
to the Sound Manager data structures and routines in the section “Sound Manager
Reference” beginning on page 2-89.

IMPORTANT

This chapter describes the capabilities and programming interfaces of
version 3.0 of the Sound Manager. See the chapter “Introduction to
Sound on the Macintosh” for some information on how version 3.0
differs from earlier versions. The capabilities and performance of
version 3.0 are significantly better than those of all previous Sound
Manager versions, even though their programming interfaces are largely
identical. This chapter occasionally warns you about techniques or
routines that cannot be used in versions prior to 3.0, but it does not
provide an exhaustive comparison of all available versions. ▲
2-5

C H A P T E R 2

Sound Manager

About the Sound Manager 2

The Sound Manager is a collection of routines that your application can use to create
sound without a knowledge of or dependence on the actual sound-producing hardware
available on any particular Macintosh computer. More generally, the Sound Manager is
responsible for managing all sound production on Macintosh computers. Other parts of
the Macintosh system software that need to create or modify sounds use the Sound
Manager to do so. Figure 2-1 shows the position of the Sound Manager in relation to
sound-producing applications and to other parts of the system software, such as the
Speech Manager and QuickTime.

Figure 2-1 The position of the Sound Manager

The Sound Manager was first introduced in system software version 6.0 and has been
significantly enhanced since that time. Prior to system software version 6.0, applications
could create sounds using the Sound Driver.

Audio

hardware

QuickTime

Movie Player

Sound components

Speech

Manager

Text-to-speech

Application

Sound Manager

Sound-producing

Application

Sound Input

Manager
2-6 About the Sound Manager

C H A P T E R 2

Sound Manager

2

S
ound M

anager

IMPORTANT

To ensure compatibility across all models of Macintosh computers, you
should always use the Sound Manager rather than the Sound Driver,
which is no longer documented or supported by Apple Computer, Inc.
The Sound Manager is simpler and much more powerful than the
Sound Driver. Moreover, Sound Driver code might not work on some
Macintosh computers. ▲

This section describes the three basic ways of defining sounds, namely using wave-table
data, square-wave data, or sampled-sound data. Usually, you’ll use sampled data to
define the sounds you want to create, because sampled data provides the greatest
flexibility and variety of sounds. You might use wave-table or square-wave data for very
simple sounds. For instance, the Simple Beep alert sound is defined using square-wave
data. Most other alert sounds are defined using sampled-sound data.

This section also describes sound commands and sound channels, which you need to
know about to be able to do anything more complex than play sound resources or files
synchronously using high-level Sound Manager routines.

Sound Data 2
The Sound Manager can play sounds defined using one of three kinds of sound data:

■ square-wave data

■ wave-table data

■ sampled-sound data

This section provides a brief description of each of these kinds of audio data and
introduces some of the concepts that are used in the remainder of this chapter. A
complete description of the nature and format of audio data is beyond the scope of this
book. There are, however, numerous books available that provide complete discussions
of digital audio data.

Square-Wave Data 2

Square-wave data is the simplest kind of audio data supported by the Sound Manager.
You can use square-wave data to generate a sound based on a square wave. Your
application can use square-wave data to play a simple sequence of sounds in which each
sound is described completely by three factors: its frequency or pitch, its amplitude (or
volume), and its duration.

The frequency of a sound is the number of cycles per second (or hertz) of the sound
wave. Usually, you specify a sound’s frequency by a MIDI value. MIDI note values
correspond to frequencies for musical notes, such as middle C, which is defined to have
a MIDI value of 60, which on Macintosh computers is equivalent to 261.625 hertz.

Pitch is a lister’s subjective interpretation of the sound’s frequency. The terms frequency
and pitch are used interchangeably in this chapter.

A sound’s duration is the length of time a sound takes to play. In the Sound Manager,
durations are usually specified in half-milliseconds.
About the Sound Manager 2-7

C H A P T E R 2

Sound Manager

The amplitude of a sound is the loudness at which it is being played. Two sounds
played at the same amplitude might not necessarily sound equally loud. For example,
one sound could be played at a lower volume (which the user may set with the Sound
control panel). Or, a sampled sound of a fleeting whisper might sound softer than a
sampled sound of continuous gunfire, even if your application plays them at the
same amplitude.

Note
Amplitude is traditionally considered to be the height of a sound wave,
so that two sounds with the same amplitude would always sound
equally loud. However, the Sound Manager considers amplitude to be
the adjustment to be made to an existing sound wave. A sound played
at maximum amplitude still might sound soft if the wave amplitude
is small. ◆

A sound’s timbre is its clarity. A sound with a low timbre is very clear; a sound with a
high timbre is buzzing. Only sounds defined using square-wave data have timbres.

Wave-Table Data 2

To produce more complex sounds than are possible using square-wave data, your
applications can use wave-table data. As the name indicates, wave-table data is based on
a description of a single wave cycle. This cycle is called a wave table and is represented
as an array of bytes that describe the timbre (or tone) of a sound at any point in the cycle.

Your application can use any number of bytes to represent the wave, but 512 is the
recommended number because the Sound Manager resizes a wave table to 512 bytes if
the table is not exactly that long. Your application can compute the wave table at run
time or load it from a resource.

A wave table is a sequence of wave amplitudes measured at fixed intervals. For instance,
a sine wave can be converted into a wave table by taking the value of the wave’s
amplitude at every 1/512 interval of the wave (see Figure 2-2).

A wave table is represented as a packed array of bytes. Each byte contains a value in the
range $00–$FF. These values are interpreted as offset values, where $80 represents an
amplitude of 0. The largest negative amplitude is $00 and the largest positive amplitude
is $FF. When playing a wave-table description of a sound, the Sound Manager loops
through the wave table for the duration of the sound.
2-8 About the Sound Manager

C H A P T E R 2

Sound Manager

2

S
ound M

anager

Figure 2-2 A graph of a wave table

Sampled-Sound Data 2

You can use sampled-sound data to play back sounds that have been digitally recorded
(that is, sampled sounds) as well as sounds that are computed, possibly at run time.
Sampled sounds are the most widely used of all the available sound types primarily
because it is relatively easy to generate a sampled sound and because sampled-sound
data can describe a wide variety of sounds. Sampled sounds are typically used to play
back prerecorded sounds such as speech or special sound effects.

You can use the Sound Manager to store sampled sounds in one of two ways, either as
resources of type 'snd ' or as AIFF or AIFF-C format files. The structure of resources of
type 'snd ' is given in “Sound Resources” on page 2-74, and the structure of AIFF and
AIFF-C files is given in “Sound Files” on page 2-81. If you simply want to play short
prerecorded sampled sounds, you should probably include the sound data in 'snd '
resources. If you want to allow the user to transfer recorded sound data from one
application to another (or from one operating system to another), you should probably
store the sound data in an AIFF or AIFF-C file. In certain cases, you must store sampled
sounds in files and not in resources. For example, a sampled sound might be too large to
be stored in a resource.

Regardless of how you store a sampled sound, you can use Sound Manager routines to
play that sound. If you choose to store sampled sounds in files of type AIFF or AIFF-C,

Single wave cycle

A
m

pl
itu

de

Packed array of bytes

1 512

$FF

$80

$00

About the Sound Manager 2-9

C H A P T E R 2

Sound Manager

you can play those sounds by calling the SndStartFilePlay function, introduced in
the chapter “Introduction to Sound on the Macintosh” in this book. If you store sampled
sounds in resources, your application can play those sounds by passing the Sound
Manager function SndPlay a handle to a resource of type 'snd ' that contains a
sampled sound header. (The SndStartFilePlay function can also play 'snd '
resources directly from disk, but this is not recommended.)

There are three types of sampled-sound headers: the standard sound header, the
extended sound header, and the compressed sound header. The sound header contains
information about the sample (such as the original sampling rate, the length of the
sample, and so forth), together with an indication of where the sample data is to be
found. The sampled sound header can reference only buffers of monophonic, 8-bit
sound. The extended sound header can be used for 8- or 16-bit stereo sound data as well
as monophonic sound data. The compressed sound header can be used to describe
compressed sound data, whether monophonic or stereo. Data can be stored in a buffer
separate from the sound resource or as part of the sound resource as the last field of the
sound header.

Note
The terminology sampled sound header can be confusing because in most
cases the sound header (and hence the 'snd ' resource) contains the
sound data as well as information describing the data. Also, do not
confuse sampled sound headers with sound resource headers. Sampled
sound headers contain information about sampled-sound data, but
sound resource headers contain information on the format of an entire
sound resource. ◆

You can play a sampled sound at its original rate or play it at some other rate to change
its pitch. Once you install a sampled sound header into a channel, you can play it at
varying rates to provide a number of pitches. In this way, you can use a sampled sound
as a voice or instrument to play a series of sounds.

Sampled-sound data is made up of a series of sample frames, which are stored
contiguously in order of increasing time. For noncompressed sound data, each sample
frame contains one or more sample points. For compressed sound data, each sample
frame contains one or more packets.

For multichannel sounds, a sample frame is an interleaved set of sample points or
packets. (For monophonic sounds, a sample frame is just a single sample point or a
single packet.) The sample points within a sample frame are interleaved by channel
number. For example, the sound data for a stereo, noncompressed sound is illustrated
in Figure 2-3.
2-10 About the Sound Manager

C H A P T E R 2

Sound Manager

2

S
ound M

anager

Figure 2-3 Interleaving stereo sample points

Each sample point of noncompressed sound data in a sample frame is, for sound files, a
linear, two’s complement value, and, for sound resources, a binary offset value. Sample
points are from 1 to 32 bits wide. The size is usually 8 bits, but a different size can be
specified in the sampleSize field of the extended sound header (for sound resources)
or in the sampleSize field of the Common Chunk (for sound files). Each sample point
is stored in an integral number of contiguous bytes. Sample points that are from 1 to 8
bits wide are stored in 1 byte, sample points that are from 9 to 16 bits wide are stored in 2
bytes, and so forth. When the width of a sample point is less than a multiple of 8 bits, the
sample point data is left aligned (using a shift-left instruction), and the low-order bits at
the right end are set to 0.

For example, for 8-bit noncompressed sound data stored in a sound resource, each
sample point is similar to a value in a wave-table description. These values are
interpreted as offset values, where $80 represents an amplitude of 0. The value $00 is the
most negative amplitude, and $FF is the largest positive amplitude.

Each packet of 3:1 compressed sound data is 2 bytes; a packet of 6:1 compressed sound is
1 byte. These byte sizes are defined in bits by the constants threeToOnePacketSize
and sixToOnePacketSize, respectively.

Sound Commands 2
The Sound Manager provides routines that allow you to create and dispose of sound
channels. These routines allow you to manipulate sound channels, but they do not
directly produce any sounds. To actually produce sounds, you need to issue sound
commands. A sound command is an instruction to produce sound, modify sound, or
otherwise assist in the overall process of sound production. For example, the ampCmd
sound command changes the amplitude (or volume) of a sound.

You can issue sound commands in several ways. You can send sound commands one at a
time into a sound channel by repeatedly calling the SndDoCommand function. The
commands are held in a queue and processed in a first-in, first-out order. Alternatively,
you can bypass a sound queue altogether by calling the SndDoImmediate function. You
can also issue sound commands by calling the function SndPlay and specifying a sound
resource of type 'snd ' that contains the sound commands you want to issue. A sound

A

B
ch Bch A

Frame n+2 A

B

ch Bch A

Frame n+1

ch Bch A

Frame n
About the Sound Manager 2-11

C H A P T E R 2

Sound Manager

resource can contain any number of sound commands. As a result, you might be able to
accomplish all sound-related activity simply by creating sound resources and calling
SndPlay in your application. See “Sound Resources” on page 2-74 for details on the
format of an 'snd ' resource.

Generally speaking, no matter how sound commands are issued, they are all eventually
sent to the Sound Manager, which interprets the commands and plays the sound on the
available audio hardware. The Sound Manager provides a rich set of sound commands.
The structure of a sound command is defined by the SndCommand data type:

TYPE SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Commands are always 8 bytes in length. The first 2 bytes are the command number, and
the next 6 make up the command’s options. The format of the last 6 bytes depends on
the command in use, although typically those 6 bytes are interpreted as an integer
followed by a long integer. For example, an application can install a wave table into a
sound channel by using SndDoCommand with a sound command whose cmd field is the
waveTableCmd constant. In that case, the param1 field specifies the length of the wave
table, and the param2 field is a pointer to the wave-table data itself. Other sound
commands may interpret the 6 parameter bytes differently or may not use them at all.

The sound commands available to your application are defined by constants.

CONST

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options are supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound}

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}
2-12 About the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}

waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

For details on individual sound commands, see the relevant sections in “Using the
Sound Manager” beginning on page 2-17. Also see “Sound Command Numbers”
beginning on page 2-92 for a complete summary of the available sound commands, their
parameters, and their uses.

Sound Channels 2
A sound channel is a queue of sound commands that is managed by the Sound
Manager, together with other information about the sounds to be played in that channel.
The commands placed into the channel might originate from an application or from the
Sound Manager itself. The commands in the queue are passed one by one, in a first-in,
first-out (FIFO) manner, to the Sound Manager for interpretation and processing.

The Sound Manager uses the SndChannel data type to define a sound channel.

TYPE SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

Most of the fields of the sound channel record are used internally by the Sound
Manager, and you should not access or change them. However, your application is free
to use the userInfo field to store any information that you wish to associate with a
sound channel. For example, you might store a handle to an application-defined record
that contains information about how your application is using the channel.

Some applications do not need to worry about creating or disposing of sound channels
because the high-level Sound Manager routines take care of these automatically.
About the Sound Manager 2-13

C H A P T E R 2

Sound Manager
However, if you wish to customize sound output or play sounds asynchronously, you
must create your own sound channels (with the SndNewChannel function).

The enhanced Sound Manager included in system software versions 6.0.7 and later
provides the ability to have multiple channels of sampled sound produce output on the
Macintosh audio hardware concurrently. (Previous versions of the Sound Manager could
play only a single channel of sampled sound at a time.) This allows a layering of sound
that can bring a touch of reality to a simulation or presentation and permits applications
to incorporate synthesized speech output with any other kind of Macintosh-generated
sound. Sound Manager version 3.0 extended this capability to allow multiple channels of
any kind of sound data to play simultaneously.

Your application can open several channels of sound for concurrent output on the
available audio hardware. Similarly, multiple applications can each open channels of
sound. The number and quality of concurrent channels of sound are limited only by the
abilities of the machine, particularly by the speed of the CPU. Different Macintosh
computers have different CPU clock speeds and execute instructions at quite different
rates. This means that some machines can manage more channels of sound and produce
higher-quality sound than other machines. For example, a Macintosh Quadra might be
able to support several channels of high-quality stereo sound without significant impact
on other processing, whereas a Macintosh Plus might be able to support only a single
channel of monophonic sound before other processing slows significantly.

The Sound Manager currently supports multiple channels of sound only on machines
equipped with an Apple Sound Chip or equivalent hardware. To maintain maximum
compatibility between machines for your applications, you should always check the
operating environment to make sure that the ability to play multiple channels of
sampled sound is present before attempting to do so. A technique for determining
whether your application can play multiple channels of sound is described in “Testing
for Multichannel Sound and Play-From-Disk Capabilities” on page 2-35.

Sound Compression and Expansion 2
One minute of monophonic sound recorded with the fidelity you would expect from a
commercial compact disc occupies about 5.3 MB of disk space. One minute of sound
digitized by the current low-fidelity digitizing peripherals for Macintosh computers
occupies more than 1 MB of disk space. Even one minute of telephone-quality speech
takes up more than half of a megabyte on a disk. Despite the increased capacities of
mass-storage devices, disk space can be a problem if your application incorporates large
amounts of sampled sound. The space problem is particularly acute for multimedia
applications. Because a large portion of the space occupied by a multimedia application
is likely to be taken up by sound data, the complexity and richness of the application’s
sound component are limited.

To help remedy this problem, the Sound Manager includes a set of routines known
collectively as Macintosh Audio Compression and Expansion (MACE). MACE enables
you to provide more audio information in a given amount of storage space by allowing
you to compress sound data and then expand it for playback. These enhancements are
based entirely in software and require no specialized hardware.
2-14 About the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
The audio compression and expansion features allow you to enhance your application
by including more audio data. MACE also relieves some distribution problems by
reducing the number of disks required for shipping an application that relies heavily on
sound. MACE has made some kinds of applications, such as talking dictionaries and
foreign language-instruction software, more feasible than before.

MACE adds three main kinds of capabilities to those already present in the Sound
Manager: audio data compression, real-time expansion and playback of compressed
audio data, and buffered expansion and playback of compressed audio data.

■ Compression. The Sound Manager can compress a buffer of digital audio data either
in the original buffer or in a separate buffer. If a segment of audio data is too large to
fit into a single buffer, your application can make repeated calls to the compression
routine.

■ Real-time expansion playback. The Sound Manager can expand compressed audio
data contained in a small internal buffer and play it back at the same time. Because the
audio data expansion and playback occur at the same time, there is more of a strain on
the CPU when using this method of sound expansion rather than buffered expansion.

■ Buffered expansion. The Sound Manager can expand a specified buffer of
compressed audio data and store the result in a separate buffer. The expanded buffer
can then be played back using other Sound Manager routines with minimal processor
overhead during playback. Applications that require screen updates or user
interaction during playback (such as animation or multimedia applications) should
use buffered expansion.

MACE provides audio data compression and expansion capabilities in ratios of either 3:1
or 6:1 for all currently supported Macintosh models, from the Macintosh Plus forward.
The principal tradeoff when using MACE is that the expanded audio data suffers a loss
of fidelity in comparison to the original data. A small amount of noise is introduced into
a 3:1 compressed sound when it is expanded and played back, and a greater amount of
noise for the 6:1 ratio. The 3:1 buffer-to-buffer compression and expansion option is well
suited for high-fidelity sounds. The 6:1 buffer-to-buffer compression and expansion
option provides greater compression at the expense of lower-fidelity results and is
recommended for voice data only. This technique reduces the frequency bandwidth of
the audio signal by a factor of two to achieve the higher compression ratio.

MACE allows for the compression of both monophonic and stereo sounds. However,
some Macintosh computer models (such as the Macintosh Plus and Macintosh SE)
cannot expand stereo sounds.

Note
With Sound Manager versions prior to 3.0, some Macintosh computers
play only the right channel of stereo 'snd ' data through the internal
speaker. Certain Macintosh II models can play only a single channel
through the internal speaker. Sound Manager version 3.0 removes both
of these limitations. ◆

Existing applications that use the Sound Manager’s SndPlay function to play digitized
audio signals can play compressed audio signals without modification or recompilation.
About the Sound Manager 2-15

C H A P T E R 2

Sound Manager
The MACE routines assume that each original sample consists of 8-bit sound in binary
offset format. The compression techniques do not, however, depend on a particular
sample rate (the rate at which samples are recorded). Table 2-1 shows some common
sample rates, expressed both as hertz and as unsigned fixed-point values.

The Sound Manager defines constants for the most common sample rates:

CONST

rate44khz = $AC440000; {44100.00000 in fixed-point}

rate22khz = $56EE8BA3; {22254.54545 in fixed-point}

rate22050hz = $56220000; {22050.00000 in fixed-point}

rate11khz = $2B7745D1; {11127.27273 in fixed-point}

rate11025hz = $2B110000; {11025.00000 in fixed-point}

The compression techniques produce their best quality output when the sample rate is
the same as the output rate of the sound hardware of the machine playing the audio
data. The output rate used in most current Macintosh computers is 22.254 kilohertz
(hereafter referred to as the 22 kHz rate). Because of speed limitations, the Macintosh
Plus and Macintosh SE cannot perform sample-rate conversion during expansion
playback. On those machines, all sounds are played back at a 22 kHz rate. To provide
consistent quality in sounds that might be played on different machines, you should
record all sounds at a 22 kHz sample rate.

The MACE algorithms are optimized to provide the best sound quality possible through
the internal speaker in real time. However, the user who employs high-quality speakers
might notice a high-frequency hiss for some sounds compressed at the 3:1 ratio. This hiss
results from a design tradeoff between maintaining real-time operation on the Macintosh
Plus and preserving as much frequency bandwidth of the signal as possible. If you think
that your output might be played on high-quality speakers, you might want to filter out
the hiss before compression by passing the audio output through an equalizer that
removes frequencies above 10 kHz. When you use the 6:1 compression and expansion
ratio, your frequency response is cut in half. For example, when you use the 22 kHz

Table 2-1 Sample rates

Rate (Hz) Sample rate value (Fixed)

44100.00000 $AC440000

22254.54545 $56EE8BA3

22050.00000 $56EE8BA3

11127.27273 $2B7745D1

11025.00000 $2B110000

7418.1818 $1CFA2E8B

5563.6363 $15BBA2E8
2-16 About the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
sample rate, the highest frequency possible would normally be 11 kHz; however, after
compressing and expanding the data at the 6:1 ratio, the highest frequency you could get
would be only 5.5 kHz.

Note
The Sound Manager uses compressions and decompression components
(codecs) to handle the MACE capabilities. You can provide custom
codecs to use other compression and decompression algorithms. See the
chapter “Sound Components” in this book for information on
developing audio codecs. ◆

Using the Sound Manager 2

The Sound Manager provides a wide variety of methods for creating sound and
manipulating audio data on Macintosh computers. Usually, your application needs
to use only a few of the many routines or sound commands that are available.

The Sound Manager routines can be divided into high-level routines and low-level
routines. The high-level routines (like SndPlay and SysBeep) give you the ability to
produce very complex audio output at very little programming expense. The majority of
applications interact with the Sound Manager using these high-level routines, which
allow you to play sounds without knowing anything about the structure of sound
commands or sampled-sound data. You can let the high-level routines automatically
allocate channels, or, for increased control, you can allocate your own sound channels.

Applications that have more sophisticated sound capabilities use the low-level routines
(like SndDoCommand and SndDoImmediate) to send sound commands to sound
channels. For example, your application might send a sound command to alter the
amplitude of a sound that is playing (or is about to play).

Finally, a few very specialized applications use the Sound Manager’s low-level sound
playback routines, which allow fine-tuning of the algorithms the Sound Manager uses to
manage the double buffering of sound for its play-from-disk routines.

In general, you should use the highest-level routines capable of producing the kind of
sound you want. Many applications can simply play sounds stored in resources or files
and do not need to customize the sounds or continue with other processing while those
sounds are playing. In such cases, you can use the high-level Sound Manager routines,
as illustrated in the chapter “Introduction to Sound on the Macintosh” in this book. If,
however, you need to be able to exercise very fine control over sound output or to play
sounds asynchronously, you must manage your own sound channels. See “Managing
Sound Channels” on page 2-19 to learn how you can use the Sound Manager to

■ allocate and dispose of sound channels manually by using the SndNewChannel and
SndDisposeChannel functions

■ manipulate sound that is playing (for example, by sending the ampCmd command to a
sound channel to change the amplitude of sound playing)
Using the Sound Manager 2-17

C H A P T E R 2

Sound Manager
■ stop sounds and flush sound channels by using the quietCmd and flushCmd
commands

■ pause and restart sound channels by using the pauseCmd and resumeCmd commands

■ synchronize sound channels by using the syncCmd command

As you’ve learned, the capabilities of the Sound Manager vary greatly from one
Macintosh computer to another, depending on which version of the Sound Manager is
available on a particular computer and on what audio hardware is available. To create
sounds effectively on all computers, you might need to obtain information about the
available sound features. “Obtaining Sound-Related Information” on page 2-32 explains
how you can

■ use the Gestalt function to determine which basic sound features are available

■ find the version number of the available Sound Manager or of the MACE compression
and expansion routines

■ determine whether your application can take advantage of multichannel sound and
the play-from-disk routines

■ obtain information about a single sound channel

Some applications need to be able to play computer-generated tones at different pitches.
In addition, some applications need to play waveforms or sampled sounds at different
pitches. For example, if you are writing an application that converts musical notes to
sound, you might record the sound of a violin playing middle C and then replay the
sound at a variety of pitches to simulate a violinist’s playing a concerto. The Sound
Manager allows you to do this by allocating a sound channel and sending sound
commands to it. “Playing Notes” on page 2-41 explains how you can

■ play simple sequences of notes by using the freqCmd and freqDurationCmd
commands

■ install waveforms or sampled sounds into channels by using the soundCmd and
waveTableCmd commands so that you can play them at different frequencies

■ set a sound resource’s loop points so that the sound repeats if a freqCmd or
freqDurationCmd command lasts longer than the sound

Although some applications do not need to do other processing while sounds are
playing, others do. If your application allocates sound channels itself, it can request that
the Sound Manager play sounds asynchronously. By using callback procedures and
completion routines, your application can arrange for a sound channel to be disposed
when a sound finishes playing. “Playing Sounds Asynchronously” on page 2-46 explains
how you can

■ play a sound resource asynchronously by defining a callback procedure

■ use callback procedures to synchronize sounds you play asynchronously with
other actions

■ play a sound file asynchronously and pause, restart, or stop such an asynchronous
playback
2-18 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
■ manage multiple channels of sound to play more than one sound asynchronously at
the same time

The high-level Sound Manager routines automatically parse sound resources and sound
files to determine the information the Sound Manager needs to play the sounds
contained in the resources and files. However, you might need to obtain information
about sound resources or sound files for some other reason. Or, you might need to locate
a certain part of a sound resource or sound file. For example, to use the bufferCmd
sound command to play a buffer of sampled sound, you must obtain a pointer to the
sound header contained in that buffer. See the section “Parsing Sound Resources and
Sound Files” on page 2-56 for information on how to

■ parse sound resources containing sampled-sound data to obtain information from the
sampled-sound data’s sound header

■ use the bufferCmd command to play sampled-sound data stored within a sound
resource

■ parse sound files to find a particular chunk and to extract the data from that chunk

High-level Sound Manager routines automatically expand sound data in real time when
playing compressed sounds. However, you might need to manually compress or expand
sound data at a time when you are not playing sounds. “Compressing and Expanding
Sounds” on page 2-66 explains how you can use the Sound Manager’s built-in sound
compression and expansion routines to compress or expand sounds.

The Sound Manager’s high-level play-from-disk routines use highly optimized
algorithms to manage the double buffering of data so that the play from disk is
continuous and without audible gaps. However, if you wish to bypass the high-level
Sound Manager play-from-disk routines, you may define your own double-buffering
routines. This might be useful if you need to change the sound data on disk before the
Sound Manager can process it. The section “Using Double Buffers” on page 2-68 explains
how you can set up your own double buffers and use a doubleback procedure to bypass
the normal play-from-disk routines.

Managing Sound Channels 2
To use most of the low-level Sound Manager routines, you must specify a sound channel
that maintains a queue of commands. Also, to take advantage of the full capabilities of
the high-level Sound Manager routines, including asynchronous sound play, you must
allocate your own sound channels. This section explains how your application can
allocate, dispose of, and use its own sound channels.

This section first describes how you can allocate and dispose of sound channels.
Then it explains how you can manipulate sounds playing in sound channels, stop
sounds playing in sound channels, and pause and restart the execution of sounds
in sound channels.
Using the Sound Manager 2-19

C H A P T E R 2

Sound Manager
Allocating Sound Channels 2

Usually, you do not need to worry about allocating memory for sound channels because
the SndNewChannel function automatically allocates a sound channel record in the
application’s heap if passed a pointer to a NIL sound channel. SndNewChannel also
internally allocates memory for the sound channel’s queue of sound commands. For
example, the following lines of code request that the Sound Manager open a new sound
channel for playing sampled sounds:

mySndChan := NIL;

myErr := SndNewChannel(mySndChan, sampledSynth, 0, NIL);

If you are concerned with managing memory yourself, you can allocate your own
memory for a sound channel record and pass the address of that memory as the first
parameter to SndNewChannel. By allocating a sound channel record manually, you not
only obtain control over the allocation of the sound channel record, but you can specify
the size of the queue of sound commands that the Sound Manager internally allocates.
Listing 2-1 illustrates one way to do this.

Listing 2-1 Creating a sound channel

FUNCTION MyCreateSndChannel (synth: Integer; initOptions: LongInt;

userRoutine: ProcPtr;

queueLength: Integer): SndChannelPtr;

VAR

mySndChan: SndChannelPtr; {pointer to a sound channel}

myErr: OSErr;

BEGIN

{Allocate memory for sound channel.}

mySndChan := SndChannelPtr(NewPtr(Sizeof(SndChannel)));

IF mySndChan <> NIL THEN

BEGIN

mySndChan^.qLength := queueLength; {set number of commands in queue}

{Create a new sound channel.}

myErr := SndNewChannel(mySndChan, synth, initOptions, userRoutine);

IF myErr <> noErr THEN

BEGIN {couldn't allocate channel}

DisposePtr(Ptr(mySndChan)); {free memory already allocated}

mySndChan := NIL; {return NIL}

END

ELSE

mySndChan^.userInfo := 0; {reset userInfo field}

END;

MyCreateSndChannel := mySndChan; {return new sound channel}

END;
2-20 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
The MyCreateSndChannel function defined in Listing 2-1 first allocates memory for a
sound channel record and then calls the SndNewChannel function to attempt to allocate
a channel. Note that MyCreateSndChannel checks the result code returned by
SndNewChannel to determine whether the function was able to allocate a channel. The
SndNewChannel function might not be able to allocate a channel if there are so many
channels open that allocating another would put too much strain on the CPU. Also,
SndNewChannel might fail if memory is low. (In addition to the memory for a sound
channel record that is passed in the first parameter to SndNewChannel, the function
must internally allocate memory in which to store sound commands.)

If you allocate memory for a sound channel record, you should specify the size of the
queue of sound commands by assigning a value to the qLength field of the sound
channel record you allocate. You can use the constant stdQLength to obtain a standard
queue of 128 sound commands, or you can provide a value of your own.

CONST

stdQLength = 128; {default size of a sound channel}

If you know that your application will play only resources containing sampled sound,
you might set the qLength field to a considerably lower value, because resources
created with the SndRecord function (described in the chapter “Introduction to Sound
on the Macintosh” in this book) contain only one sound command, the bufferCmd
command, which specifies that a buffer of sound should be played. For example, if your
application uses a sound channel only to play a single sampled sound asynchronously,
you can set qLength to 2, to allow for the bufferCmd command and a callBackCmd
command that your application issues manually, as described in “Playing Sounds
Asynchronously” on page 2-46. By using a smaller than standard queue length, your
application can conserve memory.

Note
The number of sound commands in a channel should be an integer
greater than 0. If you open a channel with a 0-length queue, most of the
Sound Manager routines will return a badChannel result code. ◆

IMPORTANT

In general, however, you should let the Sound Manager allocate sound
channel records for you. The amount of memory you might save by
allocating your own is usually negligible. ▲

The second parameter in the SndNewChannel function specifies the kind of data you
want to play on that channel. You can specify one of the following constants:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

In some versions of system software prior to system software version 7.0 (including
system software version 6.0.7), high-level Sound Manager routines do not work properly
Using the Sound Manager 2-21

C H A P T E R 2

Sound Manager
with sound resources that specify the sound data type twice. This might happen if a
resource specifies that a sound consists of sampled-sound data and an application does
the same when creating a sound channel. This might also happen if an application uses
the same sound channel to play several sound resources that contain different kinds of
sound data. There are several solutions to this problem that you can use if you must
maintain compatibility with old versions of system software:

■ If your application plays only sampled-sound resources, then you need only ensure
that none of the sound resources specifies that it contains sampled-sound data. Then,
when you create a sound channel, pass sampledSynth as the second parameter to
SndNewChannel so that the Sound Manager interprets the data in the sound
resources correctly. Do not use the SndPlay routine.

■ If your application must be able to play sampled-sound resources as well as resources
that contain square-wave or wave-table data, ensure that all sound resources that your
application uses specify their data type. (Sound resources created with the Sound
Input Manager automatically specify that they contain sampled-sound data.) Then,
when creating a channel in which you plan to play a sound resource, pass 0 as the
second parameter to SndNewChannel, and then use the channel to play no more than
one sound resource.

■ If you do not wish to modify your application’s sound resources, and your
application plays only sampled-sound resources, then you can play sounds with
low-level Sound Manager routines, a technique described in “Playing Sounds Using
Low-Level Routines” on page 2-61.

Note that this problem does not occur with sound files, because sound files always
contain sampled-sound data and thus do not explicitly declare their data type. As a
result, when creating a channel in which you plan to play a sound file, pass
sampledSynth as the second parameter to SndNewChannel.

The third parameter in the SndNewChannel function specifies the initialization
parameters to be associated with the new channel. These are discussed in the following
section. The fourth parameter in the SndNewChannel function is a pointer to a callback
procedure. If your application produces sounds asynchronously or needs to be alerted
when a command has completed, you can specify a callback procedure by passing the
address of that procedure in the fourth parameter and then by installing a callback
procedure into the sound channel. If you pass NIL as the fourth parameter, then
no callback procedure is associated with the channel. See “Playing Sounds
Asynchronously” on page 2-46 for more information on setting up and using
callback procedures.

Initializing Sound Channels 2

When you first create a sound channel with SndNewChannel, you can request that the
channel have certain characteristics as specified by a sound channel initialization
parameter. For example, to indicate that you want to allocate a channel capable of
producing stereo sound, you might use the following code:

myErr := SndNewChannel(mySndChan, sampledSynth, initStereo, NIL);
2-22 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
These are the currently recognized constants for the sound channel initialization
parameter.

CONST

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}

See “Channel Initialization Parameters” beginning on page 2-91 for a complete
description of these constants.

Note
Some Macintosh computers play only the left channel of stereo sounds
out the internal speaker. Other machines (for example, the Macintosh
SE/30 and Macintosh IIsi) mix both channels together before sending a
signal to the internal speaker. You can use the Gestalt function to
determine if a particular machine mixes both left and right channels to
the internal speaker. All Macintosh computers except the Macintosh SE
and the Macintosh Plus, however, play stereo signals out the headphone
jack. ◆

The initialization parameters are additive. To initialize a channel for stereo sound with
no linear interpolation, simply pass an initialization parameter that is the sum of the
desired characteristics, as follows:

myErr := SndNewChannel(mySndChan, sampledSynth,

initStereo+initNoInterp, NIL);

A call to SndNewChannel is really only a request that the Sound Manager open a
channel having the desired characteristics. It is possible that the parameters requested
are not available. In that case, SndNewChannel returns a notEnoughHardwareErr
error. In general, you should pass 0 as the third parameter to SndNewChannel unless
you know exactly what kind of sound is to be played.

You can alter certain initialization parameters, even while a channel is actively playing a
sound, by issuing the reInitCmd command. For example, you can change the output
channel from left to right, as shown in Listing 2-2.
Using the Sound Manager 2-23

C H A P T E R 2

Sound Manager
Listing 2-2 Reinitializing a sound channel

VAR

mySndCmd: SndCommand;

mySndChan: SndChannelPtr;

myErr: OSErr;

.

.

.

mySndCmd.cmd := reInitCmd;

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := initChanRight; {new init parameter}

myErr := SndDoImmediate(mySndChan, mySndCmd);

The reInitCmd command accepts the initNoInterp constant to toggle linear
interpolation on and off; it should be used with noncompressed sounds only. If an
noncompressed sound is playing when you send a reInitCmd command with this
constant, linear interpolation begins immediately. You can also pass initMono,
initChanLeft, or initChanRight to pan to both channels, to the left channel, or to
the right channel. This affects only monophonic sounds. The Sound Manager remembers
the settings you pass and applies them to all further sounds played on that channel.

Releasing Sound Channels 2

To dispose of a sound channel that you have allocated with SndNewChannel, use the
SndDisposeChannel function. SndDisposeChannel requires two parameters, a
pointer to the channel that is to be disposed and a Boolean value that indicates whether
the channel should be flushed before disposal. Here’s an example:

myErr := SndDisposeChannel(mySndChan, TRUE);

Because the second parameter is TRUE, the Sound Manager sends both a flushCmd
command and a quietCmd command to the sound channel (using SndDoImmediate).
This removes all commands from the sound channel and stops any sound already in
progress. Then the Sound Manager disposes of the channel.

If the second parameter is FALSE, the Sound Manager simply queues a quietCmd
command (using SndDoCommand) and waits until quietCmd is received by the channel
before disposing of the channel. In this case, the SndDisposeChannel function does
not return until the channel has finished processing commands and the queue is empty.

▲ W A R N I N G

If you dispose of a channel currently playing from disk, then your
completion routine will still execute, but will receive a pointer to a
sound channel that no longer exists. Thus, you should stop a play from
disk before disposing of a channel. See “Managing an Asynchronous
Play From Disk” on page 2-52 for more information on completion
routines. ▲
2-24 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Although the SndDisposeChannel function always releases memory reserved for
sound commands, SndDisposeChannel cannot release memory associated with a
sound channel record if you have allocated that memory yourself. For example, if you
use the MyCreateSndChannel function defined in Listing 2-1 to create a sound
channel, you must dispose first of the sound channel and then of the memory occupied
by the sound channel record, as illustrated in Listing 2-3.

Listing 2-3 Disposing of memory associated with a sound channel

FUNCTION MyDisposeSndChannel (sndChan: SndChannelPtr; quietNow: Boolean):

OSErr;

VAR

myErr: OSErr;

BEGIN

myErr := SndDisposeChannel(sndChan, quietNow); {dispose of channel}

DisposePtr(Ptr(sndChan)); {dispose of channel ptr}

MyDisposeSndChannel := myErr;

END;

If you have played a sound resource through a channel, the SndDisposeChannel
function does not free the memory taken by the resource. You must call the Resource
Manager’s ReleaseResource function to do so, or, if you have detached a resource
from a resource file, you could free the memory by making the handle unlocked and
purgeable. Note that if you play a sound resource asynchronously, you should not
release the memory occupied by the resource until the sound finishes playing or the
sound might not play properly. For information on releasing a sound resource after
playing a sound asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

IMPORTANT

In Sound Manager versions 3.0 and later, you can play sounds in any
number of sound channels. In earlier Sound Manager versions, however,
only one kind of sound can be played at one time. This results in several
important restrictions on your application. In Sound Manager version 2
and earlier, you should create sound channels just before playing
sounds. Once the sound is completed, you should dispose of the
channel. If your application is switched out and does not release a sound
channel, then other applications may be unable to open sound channels.
In particular, the system alert sound might not be heard and the user
might not be notified of important system occurrences. In general, while
it is acceptable to issue a number of sound commands to the same sound
channel, it’s not a good idea to play more than one sampled sound on
the same sound channel. ▲

Manipulating a Sound That Is Playing 2

The Sound Manager provides a number of sound commands that you can use to change
some of the characteristics of sounds that are currently playing. For example, you can
Using the Sound Manager 2-25

C H A P T E R 2

Sound Manager
alter the rate at which a sampled sound is played back, thereby lowering or increasing
the pitch of the sound. You can also pause or stop a sound that is currently in progress.
See “Pausing and Restarting Sound Channels” on page 2-29 for information on how to
pause the processing of a sound channel.

You can use the getRateCmd command to determine the rate at which a sampled sound
is currently playing. If SndDoImmediate returns noErr when you pass getRateCmd,
the current sample rate of the channel is returned as a Fixed value in the location that is
pointed to by param2 of the sound command. (As usual, the high bit of that value
returned is not interpreted as a sign bit.) Values that specify sampling rates are always
interpreted relative to the 22 kHz rate. That is, the Fixed value $00010000 indicates a
rate of 22 kHz. The value $00020000 indicates a rate of 44 kHz. The value $00008000
indicates a rate of 11 kHz.

To modify the pitch of a sampled sound currently playing, use the rateCmd command.
The current pitch is set to the rate specified in the param2 field of the sound command.
Listing 2-4 illustrates how to halve the frequency of a sampled sound that is already
playing. Note that sending the rateCmd command before a sound plays has no effect.

Listing 2-4 Halving the frequency of a sampled sound

FUNCTION MyHalveFreq (mySndChan: SndChannelPtr): OSErr;

VAR

myRate: LongInt; {rate of sound play}

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

{Get the rate of the sample currently playing.}

mySndCmd.cmd := getRateCmd; {the command is getRateCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := LongInt(@myRate);

myErr := SndDoImmediate(mySndChan, mySndCmd);

IF myErr = noErr THEN

BEGIN

{Halve the sample rate.}

mySndCmd.cmd := rateCmd; {the command is rateCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := FixDiv(myRate, $00020000);

myErr := SndDoImmediate(mySndChan, mySndCmd);

END;

MyHalveFreq := myErr;

END;

When you halve the frequency of a sampled sound using the technique in Listing 2-4, the
sound will play one octave lower than before. In addition, the sound will play twice as
2-26 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
slowly as before. Likewise, if you use the rateCmd command to double the frequency of
a sound, it plays one octave higher and twice as fast. Using rateCmd in this way is like
pressing the fast forward button on a tape player while the play button remains
depressed.

You can also use rateCmd and getRateCmd to pause a sampled sound that is currently
playing. To do this, read the rate at which it is playing, issue a rateCmd command with
a rate of 0, and then issue a rateCmd command with the previous rate when you want
the sound to resume playing.

To change the amplitude (or loudness) of the sound in progress, issue the ampCmd
command. (See Listing 2-5 for an example.) If no sound is currently playing, ampCmd sets
the amplitude of the next sound. Specify the desired new amplitude in the param1 field
of the sound command as a value in the range 0 to 255.

Listing 2-5 Changing the amplitude of a sound channel

PROCEDURE MySetAmplitude (chan: SndChannelPtr; myAmp: Integer);

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

IF chan <> NIL THEN

BEGIN

WITH mySndCmd DO

BEGIN

cmd := ampCmd; {the command is ampCmd}

param1 := myAmp; {desired amplitude}

param2 := 0; {ignored}

END;

myErr := SndDoImmediate(chan, mySndCmd);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

If your application has an option that allows users to turn off sound output, you could
call the MySetAmplitude procedure on all open channels to set the amplitude of all
channels to 0. Note that the Sound control panel allows the user to adjust the sound from
0 (softest) to 7 (loudest). This value is independent of the values used for amplitudes of
sounds playing in channels, and the Sound Manager uses the Sound control panel value
jointly with the amplitude of a sound channel to determine how loudly to play a sound.
Sounds with low frequencies sound softer than sounds with high frequencies even if the
sounds play at the same amplitude. If the amplitude of a sound is 0, the sound hardware
produces no sound; however, when the value set in the Sound control panel is 0, sound
might still play, depending on the amplitude.
Using the Sound Manager 2-27

C H A P T E R 2

Sound Manager
You can use the getAmpCmd command to determine the current amplitude of a sound in
progress. The getAmpCmd command is similar to getRateCmd, except that the value
returned is an integer. The value returned in param2 is in the range 0–255. Listing 2-6
shows an example:

Listing 2-6 Getting the amplitude of a sound in progress

VAR

myAmp: Integer;

BEGIN

mySndCmd.cmd := getAmpCmd;

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := LongInt(@myAmp);

myErr := SndDoImmediate(mySndChan, mySndCmd);

END;

To modify the timbre of a sound defined using by square-wave data, use the timbreCmd
command. A sine wave is specified as 0 in param1 and produces a very clear sound. A
value of 254 in param1 represents a modified square wave and produces a buzzing
sound. To avoid a bug in some versions of the Sound Manager, you should not use the
value 255. You should change the timbre before playing the sound.

Stopping Sound Channels 2

The Sound Manager allows you both to stop a sound currently in progress in a channel
and to remove all pending sound commands from a channel.

Note
If you have started a sound playing by using the SndStartFilePlay
function, then you can stop play by using the SndStopFilePlay
function. See “Managing an Asynchronous Play From Disk” on
page 2-52 for more details. ◆

To cause the Sound Manager to stop playing the sound in progress, send the quietCmd
command. Here’s an example:

mySndCmd.cmd := quietCmd; {the command is quietCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := 0; {unused}

{stop the sound now playing}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

To bypass the command queue, you should issue quietCmd by using
SndDoImmediate. Any sound commands that are already in the sound channel
remain there, however, and further sound commands can be queued in that channel.
2-28 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
If you wish to flush a sound channel without disturbing any sounds already in progress,
issue the flushCmd command. Here’s an example:

mySndCmd.cmd := flushCmd; {the command is flushCmd}

mySndCmd.param1 := 0; {unused}

mySndCmd.param2 := 0; {unused}

{flush the channel}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

If you want to stop all sound production by a particular sound channel immediately, you
should issue a flushCmd command and then a quietCmd command. If you issue only a
flushCmd command, the sound currently playing is not stopped. If you issue only a
quietCmd command, the Sound Manager stops the current sound but continues with
any other queued commands. (By calling flushCmd before quietCmd, you ensure that
no other queued commands are processed.)

Note
The Sound Manager sends a quietCmd command when your
application calls the SndDisposeChannel function. The quietCmd
command is preceded by a flushCmd command if the quietNow
parameter is TRUE. ◆

Pausing and Restarting Sound Channels 2

If you want to pause command processing in a particular channel, you can use either of
two sound commands, waitCmd or pauseCmd.

Note
If you have started a sound playing by using the SndStartFilePlay
function, then you can pause and resume play by using the
SndPauseFilePlay function. See “Managing an Asynchronous Play
From Disk” on page 2-52 for more details. ◆

The waitCmd command suspends all processing in a channel for a specified number of
half-milliseconds. Here’s an example:

mySndCmd.cmd := waitCmd; {the command is waitCmd}

mySndCmd.param1 := 2000; {1-second wait duration}

mySndCmd.param2 := 0; {unused}

{pause the channel}

myErr := SndDoImmediate(mySndChan, mySndCmd, FALSE);

To pause the processing of commands in a sound channel for an unspecified duration,
use the pauseCmd command. Unlike waitCmd, pauseCmd suspends processing for an
undetermined amount of time. Processing does not resume until the Sound Manager
receives a resumeCmd command for the specified channel.
Using the Sound Manager 2-29

C H A P T E R 2

Sound Manager
To issue waitCmd or pauseCmd, you can use either SndDoImmediate or
SndDoCommand, depending on whether you want the suspension of sound channel
processing to begin immediately or when the Sound Manager reaches that command in
the normal course of reading commands from a sound channel. The resumeCmd
command, which is simply the opposite of pauseCmd, should be issued by using
SndDoImmediate. Neither waitCmd nor pauseCmd stops any sound that is currently
playing; these commands simply stop further processing of commands queued in the
sound channel.

Note
If no other commands are pending in the sound channel after a
resumeCmd command, the Sound Manager sends an emptyCmd
command. The emptyCmd command is sent only by the Sound Manager
and should not be issued by your application. ◆

Synchronizing Sound Channels 2

You can synchronize several different sound channels by issuing syncCmd commands.
The param1 field of the sound command contains a count, and the param2 field
contains an arbitrary identifier. The Sound Manager keeps track of the count for each
channel being synchronized. When the Sound Manager receives a syncCmd command
for a certain channel, it decrements the count for each channel having the given
identifier, including the newly synchronized channel. Command processing resumes on
a channel when the count becomes 0. Thus, if you know how many channels you need to
synchronize, you can synchronize them all by arranging for all of their counts to become
zero simultaneously. Listing 2-7 illustrates the use of the syncCmd command.

Listing 2-7 Adding a channel to a group of channels to be synchronized

PROCEDURE MySync1Chan (chan: SndChannelPtr; count: Integer;

 identifier: LongInt);

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

WITH mySndCmd DO

BEGIN

cmd := syncCmd; {the command is syncCmd}

param1 := count;

param2 := identifier; {ID of group to be synchronized}

END;

myErr := SndDoImmediate(chan, mySndCmd);

IF myErr <> noErr THEN

DoError(myErr);

END;
2-30 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
For example, to synchronize three channels, first create the channels and then call the
MySync1Chan procedure defined in Listing 2-7 for the first channel with a count equal
to 4, for the second channel with a count equal to 3, and for the third channel with a
count equal to 2, using the same arbitrary identifier for each call to MySync1Chan. Then
fill all channels with appropriate sound commands. (For example, you might send
commands that will cause the same sequence of notes to be produced on all three
synchronized channels.) Finally, call the MySync1Chan procedure one final time,
passing any of the three channels and a count of 1. By that time, all of the other channels
will have counts of 1, and all counts will become 0 simultaneously, thus initiating
synchronized play.

Note
The syncCmd command is intended to make it easy to synchronize
sound channels. You can use the syncCmd command to start multiple
channels of sampled sound playing simultaneously, but if you require
precise synchronization of sampled-sound channels, you might
achieve better results with the Time Manager, which is described
in Inside Macintosh: Processes. ◆

Managing Sound Volumes 2
Versions of the Sound Manager prior to 3.0 allow you to set only one volume level,
which applies to all sounds produced by the audio hardware. The Sound Manager
versions 3.0 and later provide greatly improved control over the volumes of the sounds
you ask it to create. You can use new facilities to

■ set the volumes of the left and right channels of sound independently of each other

■ set the volume of the system alert sound

■ set the default volume of a particular sound output device

You can set the system alert sound volume to a different level than that of any other
sounds you produce. For example, you can set the system alert sound to play at a lower
volume than other sounds. This would allow a user to hear QuickTime movies at full
volume and to hear system alert sounds at a lower volume.

You can use the volumeCmd and getVolumeCmd sound commands to set and get the
right and left volumes of sound. You specify a channel’s volume with 16-bit value, where
0 represents no volume and hexadecimal $0100 represents full volume. The Sound
Manager defines constants for silence and full volume.

CONST

kFullVolume = $0100;

kNoVolume = 0;

The volumeCmd sound command expects the right and left volumes to be encoded as
the high word and low word, respectively, of param2. For example, to set the left
channel to half volume and the right channel to full volume, you pass the value
$01000080 in param2, as illustrated in Listing 2-8.
Using the Sound Manager 2-31

C H A P T E R 2

Sound Manager
Listing 2-8 Setting left and right volumes

FUNCTION MySetVolume (chan: SndChannelPtr): OSErr;

VAR

mySndCmd: SndCommand;

myRightVol: Integer;

myLeftVol: Integer;

myErr: OSErr;

BEGIN

myRightVol := kFullVolume;

myLeftVol := kFullVolume DIV 2;

mySndCmd.cmd := volumeCmd;

mySndCmd .param1 := 0; {unused with volumeCmd}

mySndCmd.param2 := BSL(myRightVol, 16) + myLeftVol;

myErr := SndDoImmediate(chan, mySndCmd);

MySetVolume := myErr;

END;

You can also use the volumeCmd sound command to pan a sound from one side to
another. For example, to send the output signal entirely to the right channel, pass
the value $01000000 in param2. To send the output signal entirely to the left channel,
pass the value $00000100 in param2. You can overdrive a channel’s volume by passing
volume levels greater than $0100. For example, to play the left channel of a stereo
sound at twice full volume while playing the right channel at full volume, pass the
value $01000200.

You can use the GetSysBeepVolume and SetSysBeepVolume functions to get and set
the output volume level of the system alert sound. Any calls to the SysBeep procedure
use the volume set by the previous call to SetSysBeepVolume. As you’ve learned, this
allows you to set a lower volume for the system alert sound than for your other sound
output.

You can use the GetDefaultOutputVolume and SetDefaultOutputVolume
functions to set the default output volumes for a particular output device. Each output
device has its own current volume setting and its own default setting. If the user changes
the output device (using the Sound control panel), the newly selected device will use its
own default volume level.

Obtaining Sound-Related Information 2
Developments in the sound hardware available on Macintosh computers and in the
Sound Manager routines that allow you to drive that hardware have made it imperative
that your application pay close attention to the sound-related features of the operating
environment. For example, some Macintosh computers do not have the sound input
hardware necessary to allow sound recording. Similarly, some other Macintosh
computers are not able to record sounds and play sounds simultaneously. Before taking
2-32 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
advantage of a sound-related feature that is not available on all Macintosh computers,
you should check to make sure that the target machine provides the features you need.

To make appropriate decisions about the sound you want to produce, you might need to
know some or all of the following types of information:

■ whether a machine can produce stereophonic sounds

■ what version of the Sound Manager is available

■ whether a machine can play multiple channels of sound, and whether it can take
advantage of the enhanced Sound Manager’s play-from-disk capabilities

■ whether a sound playing from disk is active or paused

■ how many channels of sound are currently open

■ whether the system beep has been disabled

The following sections describe how to use the Gestalt function and Sound Manager
routines to determine these types of information.

Obtaining Information About Available Sound Features 2

You can use the Gestalt function to obtain information about a number of hardware-
and software-related sound features. For instance, you can use Gestalt to determine
whether a machine can produce stereophonic sounds and whether it can mix both left
and right channels of sound on the internal speaker. Many applications don’t need to call
Gestalt to get this kind of information if they rely on the Sound Manager’s ability to
produce reasonable sounding output on whatever audio hardware is available. Other
applications, however, do need to use Gestalt to get this information if they depend on
specific hardware or software features that are not available on all Macintosh computers.

To get sound-related information from Gestalt, pass it the gestaltSoundAttr
selector.

CONST

gestaltSoundAttr = 'snd '; {sound attributes}

If Gestalt returns successfully, it passes back to your application a 32-bit value that
represents a bit pattern. The following constants define the bits currently set or cleared
by Gestalt:

CONST

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}
Using the Sound Manager 2-33

C H A P T E R 2

Sound Manager
gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

If the bit gestaltStereoCapability is TRUE, the built-in hardware can play stereo
sounds. The bit gestaltStereoMixing indicates that the sound hardware of the
machine mixes both left and right channels of stereo sound into a single audio signal for
the internal speaker. Listing 2-9 demonstrates the use of the Gestalt function to
determine if a machine can play stereo sounds.

Listing 2-9 Determining if stereo capability is available

FUNCTION MyHasStereo: Boolean;

VAR

myFeature: LongInt;

myErr: OSErr;

BEGIN

myErr := Gestalt(gestaltSoundAttr, myFeature);

IF myErr = noErr THEN {test stereo capability bit}

MyHasStereo := BTst(myFeature, gestaltStereoCapability)

ELSE

MyHasStereo := FALSE; {no sound features available}

END;

As shown in the chapter “Introduction to Sound on the Macintosh,” you can determine
whether your application can record by testing the gestaltHasSoundInputDevice
bit. To determine whether a built-in sound input device is available, you can test the
gestaltBuiltInSoundInput bit. The gestaltSoundIOMgrPresent bit indicates
whether the sound input routines are available. Because the
gestaltHasSoundInputDevice bit is not set if the routines are not available, only
sound input device drivers should need to use the gestaltSoundIOMgrPresent bit.

For a complete description of the response bits set by Gestalt, see “Gestalt Selector and
Response Bits” beginning on page 2-90.

Obtaining Version Information 2

The Sound Manager provides functions that allow you to determine the version
numbers both of the Sound Manager itself and of the MACE compression and expansion
routines. Generally, you should avoid trying to determine which features or routines are
present by reading a version number. Usually, the Gestalt function (discussed in the
previous section) provides a better way to find out if some set of features, such as sound
input capability, is available. In some cases, however, you can use these version routines
to overcome current limitations of the information returned by Gestalt.
2-34 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Both of these functions return a value of type NumVersion that contains the same
information as the first 4 bytes of a resource of type 'vers'. The first and second bytes
contain the major and minor version numbers, respectively; the third and fourth bytes
contain the release level and the stage of the release level. For most purposes, the major
and minor release version numbers are sufficient to identify the version. (See the chapter
“Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a complete
discussion of the format of 'vers' resources.)

You can use the SndSoundManagerVersion function to determine which version of
the Sound Manager is present. Listing 2-10 shows how to determine if the enhanced
Sound Manager is available.

Listing 2-10 Determining if the enhanced Sound Manager is present

FUNCTION MyHasEnhancedSoundManager: Boolean;

VAR

myVersion: NumVersion;

BEGIN

IF MyTrapAvailable(_SoundDispatch) THEN

BEGIN

myVersion := SndSoundManagerVersion;

MyHasEnhancedSoundManager := myVersion.majorRev >= 2;

END

ELSE

MyHasEnhancedSoundManager := FALSE

END;

The MyHasEnhancedSoundManager function defined in Listing 2-10 relies on the
MyTrapAvailable function, which is an application-defined routine provided in
Inside Macintosh: Operating System Utilities. If the _SoundDispatch trap is not available,
the SndSoundManagerVersion function is not available either, in which case the
enhanced Sound Manager is certainly not available.

You can use the MACEVersion function to determine the version number of the
available MACE routines (for example, Comp3to1).

Testing for Multichannel Sound and Play-From-Disk Capabilities 2

The ability to play multiple channels of sound simultaneously and the ability to initiate
plays from disk were first introduced with the enhanced Sound Manager. Even with the
enhanced Sound Manager, however, these capabilities are present only on computers
equipped with suitable sound output hardware (such as an Apple Sound Chip). Sound
Manager version 3.0 defines 2 additional bits in the Gestalt response parameter that
allow you to test directly for these two capabilities.
Using the Sound Manager 2-35

C H A P T E R 2

Sound Manager
CONST

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

Ideally, it should be sufficient to test directly, using Gestalt, for either multichannel
sound capability or play-from-disk capability. If your application happens to be running
under the enhanced Sound Manager, however, the two new response bits are not
defined. In that case, you’ll need to test also whether the Apple Sound Chip is available,
because multichannel sound and play from disk are supported by the enhanced Sound
Manager only if the Apple Sound Chip is available. To test for the presence of the Apple
Sound Chip, you can use the Gestalt function with the gestaltHardwareAttr
selector and the gestaltHasASC bit. Listing 2-11 combines these two tests into a single
routine that returns TRUE if the computer supports multichannel sound.

Listing 2-11 Testing for multichannel play capability

FUNCTION MyCanPlayMultiChannels: Boolean;

VAR

myResponse: LongInt;

myResult: Boolean;

myErr: OSErr;

myVersion: NumVersion;

BEGIN

myResult := FALSE;

myVersion := SndSoundManagerVersion;

myErr := Gestalt(gestaltSoundAttr, myResponse);

IF myVersion.majorRev >= 3 THEN

IF (myErr = noErr) AND (BTst(myResponse, gestaltMultiChannels)) THEN

myResult := TRUE

ELSE

BEGIN

myErr := Gestalt(gestaltHardwareAttr, myResponse);

IF (myErr = noErr) AND (BTst(myResponse, gestaltHasASC)) THEN

myResult := TRUE

END;

MyCanPlayMultiChannels := myResult;

END;

The function MyCanPlayMultiChannels first tries to get the desired information by
calling the Gestalt function with the gestaltSoundAttr selector. If Gestalt
returns successfully and the gestaltMultiChannels bit is set in the response
parameter, then multichannel play capability is present. Notice that the multichannel bit
is checked only if the version of the Sound Manager is 3.0 or greater. If the version is not
at least 3.0, then MyCanPlayMultiChannels calls the Gestalt function with the
2-36 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
gestaltHardwareAttr selector. If the computer contains the Apple Sound Chip, then
again multichannel play capability is present.

Note
The gestaltHasASC bit is set only on machines that contain an Apple
Sound Chip. You should test for the presence of the Apple Sound Chip
only in the circumstances described above. ◆

You could write a similar function to test for the ability to initiate a play from disk.
Listing 2-12 shows an example.

Listing 2-12 Testing for play-from-disk capability

FUNCTION HasPlayFromDisk: Boolean;

VAR

myResponse: LongInt;

myResult: Boolean;

myErr: OSErr;

myVersion: NumVersion;

BEGIN

myResult := FALSE;

myVersion := SndSoundManagerVersion;

myErr := Gestalt(gestaltSoundAttr, myResponse);

IF myVersion.majorRev >= 3 THEN

IF (myErr = noErr) AND

(BTst(myResponse, gestaltSndPlayDoubleBuffer)) THEN

myResult := TRUE

ELSE

BEGIN

myErr := Gestalt(gestaltHardwareAttr, myResponse);

IF (myErr = noErr) AND (BTst(myResponse, gestaltHasASC)) THEN

myResult := TRUE

END;

HasPlayFromDisk := myResult;

END;

Obtaining Information About a Single Sound Channel 2

You can use the SndChannelStatus function to obtain information about a single
sound channel and about the status of a disk-based playback on that channel, if one
exists. For example, you can use SndChannelStatus to determine if a channel is being
used for play from disk, how many seconds of the sound have been played, and how
many seconds remain to be played.
Using the Sound Manager 2-37

C H A P T E R 2

Sound Manager
One of the parameters required by the SndChannelStatus function is a pointer
to a sound channel status record, which you must allocate before calling
SndChannelStatus. A sound channel status record has this structure:

TYPE SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if channel is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

The scStartTime, scEndTime, and scCurrentTime fields are 0 unless the Sound
Manager is currently playing from disk through the specified channel. If a play from
disk is occurring, the scStartTime and scEndTime fields reflect the starting and
ending points of the play, defined in seconds; the scCurrentTime field indicates the
number of seconds between the beginning of the sound on disk and the part of the
sound currently being played. The Sound Manager sets the values of the scStartTime
and scEndTime fields based on the values you set in an audio selection record. (See
page 2-100 for a description of the audio selection record.)

Note that because the Sound Manager might be playing only a selection of a sound, the
scCurrentTime field does not reflect the number of seconds of sound play that have
elapsed. To compute the number of seconds of sound play elapsed, you can subtract the
value in the scStartTime field from that in the scCurrentTime field. However,
because the Sound Manager updates the value of the scCurrentTime field only
periodically, you should not rely on the accuracy of its value.

The scChannelBusy and scChannelPaused fields reflect whether a channel is
processing commands and whether a channel is paused, respectively. After issuing
a series of sound commands, you can use these fields to determine if the channel
has finished processing all of the commands. If both scChannelBusy and
scChannelPaused are FALSE, the Sound Manager has processed all of the
channel’s commands.

You can mask out certain values in the scChannelAttributes field to determine how
a channel has been initialized.

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}
2-38 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
The scCPULoad field previously reflected the percentage of CPU processing power
used by the sound channel. However, this field is obsolete, and you should not rely
on its value.

Listing 2-13 illustrates the use of the SndChannelStatus function. It defines a function
that takes a sound channel pointer as a parameter and determines whether a disk-based
playback on that channel is paused.

Listing 2-13 Determining whether a sound channel is paused

FUNCTION MyChannelIsPaused (chan: SndChannelPtr): Boolean;

VAR

myErr: OSErr;

mySCStatus: SCStatus;

BEGIN

MyChannelIsPaused := FALSE;

myErr := SndChannelStatus(chan, Sizeof(SCStatus), @mySCStatus);

IF myErr = noErr THEN

MyChannelIsPaused := mySCStatus.scChannelPaused;

END;

The function defined in Listing 2-13 simply reads the scChannelPaused field to see if
the playback is currently paused.

Note
In Sound Manager versions earlier than 3.0, pausing a sound channel by
issuing a pauseCmd command does not change the scChannelPaused
field. The scChannelPaused field is TRUE only if the Sound Manager
is executing a disk-based playback on the channel and that playback is
paused by the SndPauseFilePlay function. This problem is fixed in
Sound Manager versions 3.0 and later. ◆

Obtaining Information About All Sound Channels 2

You can use the SndManagerStatus function to determine information about all the
sound channels that are currently allocated by all applications. For example, you can use
this function to determine how many channels are currently allocated. One of the
parameters required by the SndManagerStatus function is a pointer to a Sound
Manager status record, which you must allocate before calling SndManagerStatus.
A Sound Manager status record has this structure:

TYPE SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;
Using the Sound Manager 2-39

C H A P T E R 2

Sound Manager
The smNumChannels field contains the number of sound channels currently allocated.
This does not mean that the channels are actually being used, only that they have been
created with the SndNewChannel function and not yet disposed.

The Sound Manager uses information that it returns in the smMaxCPULoad and
smCurCPULoad fields to help it determine whether it can allocate a new channel
when your application calls the SndNewChannel function. The Sound Manager sets
smMaxCPULoad to a default value of 100 at startup time, and the smCurCPULoad field
reflects the approximate percentage of CPU processing power currently taken by
allocated sound channels.

▲ W A R N I N G

Your application should not reply on the values returned in the
smMaxCPULoad and smCurCPULoad fields. To determine if it is safe to
allocate a channel, simply try to allocate it with the SndNewChannel
function. That function returns the appropriate result code if allocating
the channel would put too much of a strain on CPU processing. ▲

Listing 2-14 illustrates the use of SndManagerStatus. It defines a function that returns
the number of sound channels currently allocated by all applications.

Listing 2-14 Determining the number of allocated sound channels

FUNCTION MyGetNumChannels: Integer;

VAR

myErr: OSErr;

mySMStatus: SMStatus;

BEGIN

MyGetNumChannels := 0;

myErr := SndManagerStatus (Sizeof(SMStatus), @mySMStatus);

IF myErr = noErr THEN

MyGetNumChannels := mySMStatus.smNumChannels;

END;

Determining and Changing the Status of the System Alert Sound 2

The enhanced Sound Manager includes two routines—SndGetSysBeepState and
SndSetSysBeepState—that allow you to determine and alter the status of the system
alert sound. You might wish to disable the system alert sound if you are playing sound
and need to ensure that the sound you are playing is not interrupted. Currently, two
states are defined:

CONST

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

You can determine the status of the system alert sound like this:
2-40 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SndGetSysBeepState(currentState);

And you can disable the system alert sound like this:

myErr := SndSetSysBeepState(sysBeepDisable);

When the system alert sound is disabled, the Sound Manager effectively ignores all calls
to the SysBeep procedure. No sound is created and the menu bar does not flash. Also,
no resources are loaded into memory.

Note
Even when the system alert sound is enabled, it’s possible that the
system alert sound will not play; for example, the speaker volume might
be set to 0, or playing the requested system alert sound might require
too much CPU time. In such a case, the menu bar flashes. ◆

By default, the system alert sound is enabled. If you disable the system alert sound so
that your application can play a sound without being interrupted, be sure to enable the
sound when your application receives a suspend event or when the user quits your
application.

Playing Notes 2
You can play notes one at a time by using the SndDoCommand or SndDoImmediate
function to issue freqDurationCmd sound commands. A sound plays for a specified
duration at a specified frequency. You can play sounds defined by any of the three sound
data formats. If you play wave-table data or sampled-sound data, then a voice must
previously have been installed in the channel. (See “Installing Voices Into Channels” on
page 2-43 for instructions on installing wave tables and sampled sounds as voices.)

You can also play notes by issuing the freqCmd command, which is identical to
the freqDurationCmd command, except that no duration is specified when you
issue freqCmd.

Note
A freqDurationCmd command might in certain cases continue
playing until another command is available in the sound channel.
Therefore, to play a single note for a specified duration, you should
issue freqDurationCmd followed immediately by quietCmd.
See “Stopping Sound Channels” on page 2-28 for further details
on quietCmd. ◆

The structure of a freqDurationCmd command is slightly different from that of most
other sound commands. The param1 field contains the duration of the sound, specified
in half-milliseconds. A value of 2000 represents a duration of 1 second. The maximum
duration is 32,767, or about 16 seconds, in Sound Manager versions 2.0 and earlier; the
maximum duration in Sound Manager version 3.0 and later is 65,536, or about
32 seconds. The param2 field specifies the frequency of the sound. The frequency is
specified as a MIDI note value (that is, a value defined by the established MIDI
Using the Sound Manager 2-41

C H A P T E R 2

Sound Manager
standard). Listing 2-15 uses the freqDurationCmd command in a way that ensures the
sound stops after the specified duration.

Listing 2-15 Using the freqDurationCmd command

PROCEDURE MyPlayFrequencyOnce (mySndChan: SndChannelPtr;

myMIDIValue: Integer;

milliseconds: Integer);

CONST

kNoWait = TRUE; {add now to full queue?}

VAR

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

{Start the sound playing.}

WITH mySndCmd DO

BEGIN

cmd := freqDurationCmd; {play for period of time}

param1 := milliseconds * 2; {half-milliseconds}

param2 := myMIDIValue; {MIDI value to play}

END;

myErr := SndDoCommand(mySndChan, mySndCmd, NOT kNoWait);

IF myErr <> noErr THEN

DoError(myErr)

ELSE

BEGIN {ensure that sound stops}

WITH mySndCmd DO

BEGIN

cmd := quietCmd; {stop playing sound}

param1 := 0; {unused with quietCmd}

param2 := 0; {unused with quietCmd}

END;

myErr := SndDoCommand(mySndChan, mySndCmd, NOT kNoWait);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

Table 2-2 shows the decimal values that can be sent with a freqDurationCmd or
freqCmd command. Middle C is represented by a value of 60 and is defined by a special
Sound Manager constant.

CONST

kMiddleC = 60; {MIDI note value for middle C}
2-42 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Other specifiable frequencies correspond to MIDI note values.

You can play square-wave and wave-table data at these frequencies only. If you are
playing a sampled sound, however, you can modify the sampleRate field of the sound
header to play a sound at an arbitrary frequency. To do so, use the following formula:

new sample rate = (new frequency / original frequency) * original sample rate

where the new and original frequencies are measured in hertz. To convert a MIDI value
to hertz for use in this formula, note that middle C is defined as 261.625 Hz and that the
ratio between the frequencies of consecutive MIDI values equals the twelfth root of 2,
defined by the constant twelfthRootTwo.

CONST

twelfthRootTwo = 1.05946309434;

IMPORTANT

When calculating with numbers of type Fixed, pay attention to possible
overflows. The maximum value of a number of type Fixed is 65,535.0.
As a result, some sample rates and pitches cannot be specified. Sound
Manager version 3.0 fixes these overflow problems. ▲

You can rest a channel for a specified duration by issuing a restCmd command. The
duration, specified in half-milliseconds, is passed in the param1 field of the sound
command.

Installing Voices Into Channels 2

You can play frequencies defined by any of the three sound data types. By playing a
frequency defined by wave-table or sampled-sound data, you can achieve a different

Table 2-2 Frequencies expressed as MIDI note values

A A# B C C# D D# E F F# G G#

Octave 1 0 1 2 3 4 5 6 7 8

Octave 2 9 10 11 12 13 14 15 16 17 18 19 20

Octave 3 21 22 23 24 25 26 27 28 29 30 31 32

Octave 4 33 34 35 36 37 38 39 40 41 42 43 44

Octave 5 45 46 47 48 49 50 51 52 53 54 55 56

Octave 6 57 58 59 60 61 62 63 64 65 66 67 68

Octave 7 69 70 71 72 73 74 75 76 77 78 79 80

Octave 8 81 82 83 84 85 86 87 88 89 90 91 92

Octave 9 93 94 95 96 97 98 99 100 101 102 103 104

Octave 10 105 106 107 108 109 110 111 112 113 114 115 116

Octave 11 117 118 119 120 121 122 123 124 125 126 127
Using the Sound Manager 2-43

C H A P T E R 2

Sound Manager
sound than by playing that same frequency using square-wave data. For example, you
might wish to play the sound of a dog’s barking at a variety of frequencies. To do that,
however, you need to install a voice of the barking into the sound channel to which you
want to send freqCmd or freqDurationCmd commands.

You can install a wave table into a channel as a voice by issuing the waveTableCmd
command. The param1 field of the sound command specifies the length of the wave
table, and the param2 field is a pointer to the wave-table data itself. Note that the Sound
Manager resamples the wave table so that it is exactly 512 bytes long.

You can install a sampled sound into a channel as a voice by issuing the soundCmd
command. You can either issue this command from your application or put it into an
'snd ' resource. If your application sends this command, param2 is a pointer to the
sampled sound locked in memory. If soundCmd is contained within an 'snd ' resource,
the high bit of the command must be set. To use a sampled-sound 'snd ' as a voice,
first obtain a pointer to the sampled sound header locked in memory. Then pass this
pointer in param2 of a soundCmd command. After using the sound, your application is
expected to unlock this resource and allow it to be purged.

Listing 2-16 demonstrates how you can use the soundCmd command to install a sampled
sound in memory as a voice in a channel.

Listing 2-16 Installing a sampled sound as a voice in a channel

FUNCTION MyInstallSampledVoice (mySndHandle: Handle;

mySndChan: SndChannelPtr): OSErr;

VAR

mySndCmd: SndCommand; {a sound command}

mySndHeader: SoundHeaderPtr; {sound header from resource}

BEGIN

{get pointer to sound header}

mySndHeader := MyGetSoundHeader(mySndHandle);

WITH mySndCmd DO

BEGIN

cmd := soundCmd; {install sampled voice}

param1 := 0; {ignored with soundCmd}

param2 := LongInt(mySndHeader); {store sound header location}

END;

IF mySndHeader = NIL THEN {check for defective handle}

MyInstallSampledVoice := badFormat

ELSE {install sound as voice}

MyInstallSampledVoice := SndDoImmediate(mySndChan, mySndCmd);

END;

Listing 2-16 relies on the MyGetSoundHeader function to obtain a pointer to the sound
header within the sound handle. That function is defined in “Obtaining a Pointer to a
2-44 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Header” on page 2-57 and returns NIL if the sound handle does not include a
sound header. Note that the MyGetSoundHeader function locks the sound handle in
memory so that the pointer to the sound header remains valid. When you are done with
the sound channel in which you have installed the sampled sound, you should unlock
the sound handle and make it purgeable so that it does not waste memory.

Looping a Sound Indefinitely 2

If you install a sampled sound as a voice in a channel and then play the sound using
a freqCmd or freqDurationCmd command that lasts longer than the sound, the
sound will ordinarily stop before the end of the time specified by the freqCmd or
freqDurationCmd command. Sometimes, however, this might not be what you’d like
to have happen. For example, you might have recorded the sound of a violin playing
and then stored that sound in a resource so that you could play the sound of a violin at
a number of different frequencies. Although you could record the sound so that it is
long enough to continue playing through the longest freqCmd or freqDurationCmd
command that your application might require, this might not be practical. Fortunately,
the Sound Manager provides a mechanism that allows you to repeat sections of sampled
sound after the sound has finished playing once completely.

When you use the freqDurationCmd command with a sampled sound as the voice,
freqDurationCmd starts at the beginning of the sampled sound. If necessary to achieve
the desired duration of sound, the command replays that part of the sound that is
between the loop points specified in the sampled sound header. Note that any sound
preceding or following the loop points will not be replayed. There must be an ending
point for the loop specified in the header in order for freqDurationCmd to work
properly.

Listing 2-17 Looping an entire sampled sound

PROCEDURE MyDoLoopEntireSound (sndHandle: Handle);

VAR

mySndHeader: SoundHeaderPtr; {sound header from resource}

myTotalBytes: LongInt; {bytes of data to loop}

BEGIN

mySndHeader := MyGetSoundHeader(sndHandle);

IF mySndHeader <> NIL THEN

BEGIN {compute bytes of sound data}

CASE mySndHeader^.encode OF

stdSH: {standard sound header}

WITH mySndHeader^ DO

myTotalBytes := mySndHeader^.length;

extSH: {extended sound header}

WITH ExtSoundHeaderPtr(mySndHeader)^ DO

myTotalBytes := numChannels * numFrames * (sampleSize DIV 8);

cmpSH: {compressed sound header}
Using the Sound Manager 2-45

C H A P T E R 2

Sound Manager
WITH CmpSoundHeaderPtr(mySndHeader)^ DO

myTotalBytes := numChannels * numFrames * (sampleSize DIV 8);

END;

WITH mySndHeader^ DO

BEGIN {set loop points}

loopStart := 0; {start with first byte}

loopEnd := myTotalBytes - 1; {end with last byte}

END;

END;

END;

Listing 2-17 uses the MyGetSoundHeader function defined in “Obtaining a Pointer to a
Sound Header” on page 2-57. Note that the formula for computing the length of a sound
depends on the type of sound header. Also, while the formula is the same for both an
extended and a compressed sound header, you must write code that differentiates
between the two types of sound headers because the sampleSize field is not stored in
the same location in both sound headers.

Playing Sounds Asynchronously 2
The Sound Manager currently allows you to play sounds asynchronously only if you
allocate sound channels yourself, using techniques described in “Managing Sound
Channels” on page 2-19. But if you use such a technique, your application will need to
dispose of a sound channel whenever the application finishes playing a sound. In
addition, your application might need to release a sound resource that you played on a
sound channel.

To avoid the problem of not knowing when to dispose of a sound channel playing a
sound asynchronously, your application could simply allocate a single sound channel
when it starts up (or receives a resume event) and dispose of the channel when the user
quits (or the application receives a suspend event). However, this solution will not work
if you need to release a resource when a sound finishes playing. Also, you might not
want to keep a sound channel allocated when you are not using it. For instance, you
might want to use the memory taken up by a sound channel for other tasks when no
sound is playing.

Your application could call the SndChannelStatus function once each time through its
main event loop to determine if a channel is still making sound. When the scBusy field
of the sound channel status record becomes FALSE, your application could then dispose
of the channel. This technique is easy, but calling SndChannelStatus frequently uses
up processing time unnecessarily.

The Sound Manager provides other mechanisms that allow your application to find out
when a sound finishes playing, so that your application can arrange to dispose of sound
channels no longer being used and of other data (such as a sound resource) that you no
longer need after disposing of a channel. If you are using the SndPlay function or
low-level commands to play sound in a channel, then you can use callback procedures. If
you are using the SndStartFilePlay function to play sound in a channel, then you
2-46 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
can use completion routines. The following sections illustrate how to use callback
procedures and completion routines.

Note
Callback procedures are a form of completion routine. However, for
clarity, this section uses the terminology “completion routine” only for
the routines associated with the SndStartFilePlay function. ◆

Using Callback Procedures 2

This section shows how you can use callback procedures to play one sound
asynchronously at a given time. “Managing Multiple Sound Channels” on page 2-53
expands the techniques in this section to show how you can play several asynchronous
sounds simultaneously.

The SndNewChannel function allows you to associate a callback procedure with a
sound channel. For example, the following code opens a new sound channel for which
memory has already been allocated and associates it with the callback procedure
MyCallBack:

myErr := SndNewChannel(gSndChan, sampledSynth, initMono, @MyCallback);

After filling a channel created by SndNewChannel with various commands to create
sound, you can then issue a callBackCmd command to the channel. When the Sound
Manager encounters a callBackCmd command, it executes your callback procedure.
Thus, by placing the callBackCmd command last in a channel, you can ensure that the
Sound Manager executes your callback procedure only after it has processed all of the
channel’s other sound commands.

Note
Be sure to issue callBackCmd commands with the SndDoCommand
function and not the SndDoImmediate function. If you issue a
callBackCmd command with SndDoImmediate, your callback
procedure might be called before other sound commands you have
issued finish executing. ◆

A callback procedure has the following syntax:

PROCEDURE MyCallBack (chan: SndChannelPtr; cmd: SndCommand);

Because the callback procedure executes at interrupt time, it cannot access its application
global variables unless the application’s A5 world is set correctly. (For more information
on the A5 world, see the chapter “Memory Management Utilities” in Inside Macintosh:
Memory.) When called, the callback procedure is passed two parameters: a pointer to the
sound channel that received the callBackCmd command and the sound command that
caused the callback procedure to be called. Applications can use param1 or param2 of
the sound command as flags to pass information or instructions to the callback
procedure. If your callback procedure is to use your application’s global data storage, it
must first reset A5 to your application’s A5 and then restore it on exit. For example,
Listing 2-18 illustrates how to set up a callBackCmd command that contains the
Using the Sound Manager 2-47

C H A P T E R 2

Sound Manager
required A5 information in the param2 field. The MyInstallCallback function
defined there must be called at a time when your application’s A5 world is known
to be valid.

Listing 2-18 Issuing a callback command

FUNCTION MyInstallCallback (mySndChan: SndChannelPtr): OSErr;

CONST

kWaitIfFull = TRUE; {wait for room in queue}

VAR

mySndCmd: SndCommand; {a sound command}

BEGIN

WITH mySndCmd DO

BEGIN

cmd := callBackCmd; {install the callback command}

param1 := kSoundComplete; {last command for this channel}

param2 := SetCurrentA5; {pass the callback the A5}

END;

MyInstallCallback := SndDoCommand(mySndChan, mySndCmd, kWaitIfFull);

END;

In this function, kSoundComplete is an application-defined constant that indicates that
the requested sound has finished playing. You could define it like this:

CONST

kSoundComplete = 1; {sound is done playing}

Because param2 of a sound command is a long integer, Listing 2-18 uses it to pass the
application’s A5 to the callback procedure. That allows the callback procedure to gain
access to the application’s A5 world.

Note
You can also pass information to a callback routine in the userInfo
field of the sound channel. ◆

The sample callback procedure defined in Listing 2-19 can thus set A5 to access the
application’s global variables.

Listing 2-19 Defining a callback procedure

PROCEDURE MyCallback (theChan: SndChannelPtr; theCmd: SndCommand);

VAR

myA5: LongInt;

BEGIN

IF theCmd.param1 = kSoundComplete THEN
2-48 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
BEGIN

myA5 := SetA5(theCmd.param2); {set my A5}

gCallbackPerformed := TRUE; {set a global flag}

myA5 := SetA5(myA5); {restore the original A5}

END;

END;

▲ W A R N I N G

Callback procedures are called at interrupt time and therefore must
not attempt to allocate, move, or dispose of memory, dereference
an unlocked handle, or call other routines that do so. Also,
assembly-language programmers should note that a callback
procedure is a Pascal procedure and must preserve all registers
other than A0–A1 and D0–D2. ▲

Callback procedures cannot dispose of channels themselves, because that involves
disposing of memory. To circumvent this restriction, the callback procedure in Listing
2-19 simply sets the value of a global flag variable that your application defines. Then,
once each time through its main event loop, your application must call a routine that
checks to see if the flag is set. If the flag is set, the routine should dispose of the channel,
release any other memory allocated specifically for use in the channel, and reset the flag
variable. Listing 2-20 defines such a routine. Your application should call it once each
time through its main event loop.

Listing 2-20 Checking whether a callback procedure has executed

PROCEDURE MyCheckSndChan;

CONST

kQuietNow = TRUE; {need to quiet channel?}

VAR

myErr: OSErr;

BEGIN

IF gCallbackPerformed THEN {check global flag}

BEGIN {channel is done}

gCallbackPerformed := FALSE; {reset global flag}

IF gSndChan^.userInfo <> 0 THEN

BEGIN {release sound data}

HUnlock(Handle(gSndChan^.userInfo));

HPurge(Handle(gSndChan^.userInfo));

END;

myErr := MyDisposeSndChannel(gSndChan, kQuietNow);

gSndChan := NIL; {set pointer to NIL}

END;

END;
Using the Sound Manager 2-49

C H A P T E R 2

Sound Manager
The MyCheckSndChan procedure defined in Listing 2-20 checks the userInfo field of
the sound channel to see if it contains the address of a handle. Thus, if you would like
the MyCheckSndChan procedure to release memory associated with a sound handle,
you need only put the address of the handle in the userInfo field of the sound channel.
(If you do not want the MyCheckSndChan procedure to release memory associated with
a handle, then you should set the userInfo field to 0 when you allocate the channel.
The MyCreateSndChannel function defined in Listing 2-1 on page 2-20 automatically
sets this field to 0.) After releasing the memory associated with the sound handle, the
MyCheckSndChan procedure calls the MyDisposeSndChannel function (defined in
Listing 2-3 on page 2-25) to release the memory occupied by both the sound channel and
the sound channel record.

To ensure that the MyCheckSndChan procedure defined in Listing 2-20 does not
attempt to dispose a channel before you have created one, you should initialize the
gCallbackPerformed variable to FALSE. Also, you should initialize the gSndChan
variable to NIL, so that other parts of your application can check to see if a sound is
playing simply by checking this variable. For example, if your application must play a
sound but another sound is currently playing, you might ensure that the application
gives priority to the newer sound by stopping the old one. Listing 2-21 defines a
procedure that stops the sound that is playing.

Listing 2-21 Stopping a sound that is playing asynchronously

PROCEDURE MyStopPlaying;

BEGIN

IF gSndChan <> NIL THEN {is sound really playing?}

gCallbackPerformed := TRUE; {set global flag}

MyCheckSndChan; {call routine to do disposing}

END;

Once you have defined a callback procedure, a routine that installs the callback
procedure, a routine that checks the status of the callback procedure, and a routine that
can stop sound play, you need only allocate a sound channel, call the SndPlay function,
and install your callback procedure to start an asynchronous sound play. Listing 2-22
defines a procedure that starts an asynchronous play.

Listing 2-22 Starting an asynchronous sound play

PROCEDURE MyStartPlaying (mySndID: Integer);

CONST

kAsync = TRUE; {play is asynchronous}

VAR

mySndHandle: Handle; {handle to an 'snd ' resource}

myErr: OSErr;

BEGIN
2-50 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
IF gSndChan <> NIL THEN {check if channel is active}

MyStopPlaying;

gSndChan := MyCreateSndChannel(0, 0, @MyCallbackProc, stdQLength);

mySndHandle := GetResource('snd ', mySndID);

IF (mySndHandle <> NIL) AND (gSndChan <> NIL) THEN

BEGIN {start sound playing}

DetachResource(mySndHandle); {detach resource from file}

{remember to release sound handle}

gSndChan^.userInfo := LongInt(mySndHandle);

HLock(mySndHandle); {lock the resource data}

myErr := SndPlay(gSndChan, mySndHandle, kAsync);

IF myErr = noErr THEN

myErr := MyInstallCallback(gSndChan);

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

The MyStartPlaying procedure uses the MyCreateSndChannel function defined
in Listing 2-1 to create a sound channel, requesting that the function allocate a
standard-sized sound channel command queue. By using such a queue, you can be
sure that your application can play any sound resource that contains up to 127 sound
commands. If you are sure that your application will play only sampled-sound resources
created by the Sound Input Manager, you should request a queue of only two sound
commands, thereby leaving enough room for just the bufferCmd command contained
within the sound resource and the callBackCmd command that your application issues.

Before playing the sound, the MyStartPlaying procedure defined in Listing 2-22
detaches the sound resource from its resource file after loading it. This is important if
the resource file could close while the sound is still playing, or if your application
might create another sound channel to play the same sound resource while the sound
is still playing.

Synchronizing Sound With Other Actions 2

If your application uses callback procedures to play sound asynchronously, you might
wish to synchronize sound play with other activity, such as an onscreen animation.

Callback procedures allow your application to do that by using different constant values
in the param1 field of the callback command. For example, you could define a constant
kFirstSoundFinished to signal to your application that the first of a series of sounds
has finished playing. Then, your callback procedure could set an appropriate global flag
depending on whether the param1 field equals kFirstSoundFinished,
kSoundComplete, or some other constant that your application defines. Finally, a
procedure that you call once each time through your application’s event loop could
check to see which of the various global flag variables are set and respond appropriately.
Meanwhile, sound continues to play.
Using the Sound Manager 2-51

C H A P T E R 2

Sound Manager
Managing an Asynchronous Play From Disk 2

The Sound Manager allows you to play a sound file asynchronously with the
SndStartFilePlay function by defining a completion routine that sets a global flag to
alert the application to dispose of the sound channel when the sound is done playing.
Completion routines are thus similar to callback procedures, but they are easier to use in
that you do not need to install them. The Sound Manager automatically executes them
when a play from disk ends, whether it has ended because the application called the
SndStopFilePlay function, because the application disposed of the sound channel in
which the sound was playing, or because the sound has finished playing.

You define a completion routine like this:

PROCEDURE MySoundCompletionRoutine (chan: SndChannelPtr);

Note that unlike callback procedures, completion routines have only one parameter, a
pointer to a sound channel. Thus, for the completion routine to set the application’s A5
world properly, you should pass the value of the application’s A5 in the userInfo field
of the sound channel, like this:

gSndChan^.userInfo := SetCurrentA5;

Then your completion routine can look in the userInfo field of the sound channel to
set A5 correctly before it can access any application global variables. Listing 2-23 defines
a completion routine that sets A5 correctly.

Listing 2-23 Defining a completion routine

PROCEDURE MySoundCompletionRoutine (chan: SndChannelPtr);

VAR

myA5: LongInt;

BEGIN

myA5 := SetA5(chan^.userInfo); {set my A5}

gCompletionPerformed := TRUE; {set a global flag}

myA5 := SetA5(myA5); {restore the original A5}

END;

The completion routine defined in Listing 2-23 sets a global flag variable to indicate that
the completion routine has been called. To start a sound file playing, you can use a
routine analogous to that defined in Listing 2-22, but when allocating a sound channel,
you need only allocate a queue of a single sound command. You can than use a
procedure analogous to that defined in Listing 2-20 to check the flag once each time
through the application’s event loop and dispose of the sound channel if the flag is set.

If you do use the SndStartFilePlay function to play sounds asynchronously, then
you can pause, restart, and stop play simply by using the SndPauseFilePlay and
SndStopFilePlay functions.
2-52 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
You use SndPauseFilePlay to temporarily suspend a sound from playing. If a sound
is playing and you call SndPauseFilePlay, then the sound is paused. If the sound is
paused and you call SndPauseFilePlay again, then the sound resumes playing.
Hence, the SndPauseFilePlay routine acts like a pause button on a tape player, which
toggles the tape between playing and pausing. (You can determine the current state of a
play from disk by using the SndChannelStatus function. See “Obtaining Information
About a Single Sound Channel” on page 2-37 for more details.) Finally, you can use
SndStopFilePlay to stop the file from playing.

Playing Selections 2

The sixth parameter passed to the SndStartFilePlay function is a pointer to an
audio selection record, which allows you to specify that only part of the sound be
played. If that parameter has a value different from NIL, then SndStartFilePlay
plays only a specified selection of the entire sound. You indicate which part of the entire
sound to play by giving two offsets from the beginning of the sound, a time at which to
start the selection and a time at which to end the selection. Currently, both time offsets
must be specified in seconds.

Here is the structure of an audio selection record:

TYPE AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

To play a selection, you should specify in the selStart and selEnd fields the starting
and ending point in seconds of the sound to play. Also, you must set the unitType field
to the constant unitTypeSeconds.

If you wish to play an entire sound, you can simply pass NIL to the
SndStartFilePlay function. Alternatively, you can set the unitType field to the
constant unitTypeNoSelection, in which case the values in the selStart and
selEnd fields are ignored.

Managing Multiple Sound Channels 2

If you are writing an application that can play multiple channels of sound on Macintosh
computers that support that feature, you can use the Sound Manager’s asynchronous
playing abilities, but you might encounter some special obstacles. The technique for
playing sounds asynchronously described in “Playing Sounds Asynchronously” on
page 2-46 has a limitation if you are using multiple sound channels. Using that technique
without modification, you would need to define each separate sound channel in a
different global variable, and you would need to use several global flags in your callback
procedure to signal which sound channels have finished processing sound commands.
Using the Sound Manager 2-53

C H A P T E R 2

Sound Manager
Although it is easy to modify the code in “Playing Sounds Asynchronously” to use
several flags, this solution might not be satisfactory for an application in which the
number of sound channels open can vary. For example, suppose that you are writing
entertainment software with dozens of sound effects that correspond to actions on the
screen and you wish to use the Sound Manager asynchronously so that several sound
effects can be played at once. It would be cumbersome to associate a separate global
sound channel variable with each sound and create a flag variable for each of these
sound channels. Also, you might wish to play the same sound simultaneously in two
separate channels. It would be better to write code that manages a global list of sound
channels and then provides a simple routine that allows you to add a channel to the list.
This section shows how you might implement such a list of sound channels. Listing 2-24
defines a data structure that you could use to track multiple sound channels.

Listing 2-24 Defining a data structure to track many sound channels

CONST

kMaxNumSndChans = 20; {max number of sound channels}

TYPE

SCInfo =

RECORD

sndChan: SndChannelPtr; {NIL or pointer to channel}

mustDispose: Boolean; {flag to dispose channel}

itsData: Handle; {data to dispose with channel}

END;

SCList = ARRAY[1..kMaxNumSndChans] OF SCInfo;

VAR

gSndChans: SCList;

The SCInfo data structure defined in Listing 2-24 allows you to keep track of which
channels in the collection are being used and which were being used but currently need
disposal; it also allows you to associate data with a sound channel so that you can
dispose of the data when you dispose of the sound channel. Note that the value of the
kMaxNumSndChans constant might vary from application to application. Having
defined the data structure, you must initialize it (so that the sndChan and itsData
fields are NIL and the mustDispose field is FALSE). You must also write a procedure
that finds an available channel. You might declare such a procedure like this:

PROCEDURE DoTrackChan (chanToTrack: SndChannelPtr; associatedData: Handle);

Using such a procedure, you could simply create sound channels by using local variables
and then add them to the tracking list so that your application disposes of them when
they finish executing. The exact implementation of such a procedure would depend on
the needs of your application. For example, if there are no channels available in the
global list of sound channels, your application might report an error, stop sound on all
active channels, or stop sound on the channel that has been playing the longest. If you
want your application to be compatible with computers that do not support
2-54 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
multichannel sound, this procedure could check whether multichannel sound is
supported, and if not, would stop any sound playing on other channels. This is
particularly useful if your application plays sound effects in response to actions on the
screen; overlapping sound effects sound best, but if this is unattainable, the newest
sound should have the highest priority.

One advantage of maintaining a list of sound channels is that you can use it in
conjunction with both callback procedures and completion routines. Listing 2-25 defines
a procedure that either your callback procedure or completion routine could call after
setting the application’s A5 world correctly.

Listing 2-25 Marking a channel for disposal

PROCEDURE MySetTrackChanDispose (mySndChannel: SndChannelPtr);

VAR

index: Integer; {channel index}

found: Boolean; {flag variable}

BEGIN

index := 1; {start at first spot}

found := FALSE; {initialize flag variable}

WHILE (index <= kMaxNumSndChans) AND (NOT found) DO

IF gSndChans[index].sndChan = mySndChannel THEN

found := TRUE {proper channel found}

ELSE

index := index + 1; {move to next spot}

IF found THEN

gSndChans[index].mustDispose := TRUE;

END;

The final thing you need to do is to define a procedure that your application calls once
each time through its main event loop. This procedure must dispose of sound channels
that are marked for disposal. Listing 2-26 defines such a routine.

Listing 2-26 Disposing of channels that have been marked for disposal

PROCEDURE MyCleanUpTrackedChans;

CONST

kQuietNow = TRUE; {need to quiet channel?}

VAR

index: Integer;

myErr: OSErr;

BEGIN

FOR index := 1 TO kMaxNumSndChans DO {go through all channels}

WITH gSndChans[index] DO
Using the Sound Manager 2-55

C H A P T E R 2

Sound Manager
IF mustDispose THEN {check global flag}

BEGIN {channel needs disposal}

IF gSndChans[index].itsData <> NIL THEN

BEGIN {release other data}

HUnlock(gSndChans[index].itsData);

HPurge(gSndChans[index].itsData);

END;

{free channel-related memory}

myErr := MyDisposeSndChannel(sndChan, kQuietNow);

sndChan := NIL; {set pointer to NIL}

mustDispose := FALSE; {reset global flag}

IF myErr <> noErr THEN

DoError(myErr);

END;

END;

The MyCleanUpTrackedChans procedure defined in Listing 2-26 works just like the
MyCheckSndChan procedure defined in Listing 2-20, but instead of checking a single
global flag, it checks the flag associated with each allocated sound channel. Now that
you have defined such a procedure, you can easily write a routine to stop sound in all
active channels (for example, if your application receives a suspend event). Simply set
the mustDispose flag on all sound channels that are allocated (that is for all channels
that are not NIL) and then call MyCleanUpTrackedChans. Note, however, that when
the MyCleanUpTrackedChans procedure disposes of a sound channel processing a
play from disk, the completion routine will be called and will thus set the mustDispose
flag to TRUE. Thus, the mustDispose flag must be reset to FALSE after the sound
channel has been disposed. Otherwise, the MyCleanUpTrackedChans procedure
would try to dispose of the same sound channel again when the application called it
from its main event loop.

Parsing Sound Resources and Sound Files 2
This section explains how you can parse sound resources and sound files to find the
component of a sound resource or sound file that contains information about the sound.
For sound resources, this information is stored in the sound header. In addition to
obtaining information about a sound from a sound header, you might need a pointer to a
sound header to use any of several low-level sound commands. For sound files,
information is stored in the Form and Common Chunks. This section shows how you
can find those chunks and extract information from them.

Note
The techniques shown in this section assume that you are familiar with
the format of sound resources and sound files. See “Sound Storage
Formats” beginning on page 2-73 for complete information on sound
storage formats. ◆
2-56 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Obtaining a Pointer to a Sound Header 2

This section shows how you can obtain a pointer to a sound header stored in a sound
resource. You can use this pointer to obtain information about the sound. You also need a
pointer to a sound header to install a sampled sound as a voice in a channel (as
described in “Installing Voices Into Channels” on page 2-43) and to play sounds using
low-level sound commands (as described below and in the next section). You can use a
technique similar to the one described in this section if you wish to obtain a pointer to
wave-table data that is stored in a sound resource.

Sound Manager versions 3.0 and later include the GetSoundHeaderOffset function
that you can use to locate a sound header embedded in a sound resource. Listing 2-27
shows how to call the GetSoundHeaderOffset function and then pass the returned
offset to the bufferCmd sound command, to play a sampled sound using low-level
Sound Manager routines.

Listing 2-27 Playing a sound resource

FUNCTION MyPlaySampledSound (chan: SndChannelPtr; sndHandle: Handle): OSErr;

VAR

myOffset: LongInt;

mySndCmd: SndCommand; {a sound command}

myErr: OSErr;

BEGIN

myErr := GetSoundHeaderOffset(sndHandle, myOffset);

IF myErr = noErr THEN

BEGIN

HLock(sndHandle);

mySndCmd.cmd := bufferCmd; {command is bufferCmd}

mySndCmd.param1 := 0; {unused with bufferCmd}

mySndCmd.param2 := LongInt(ORD4(sndHandle^) + myOffset);

myErr := SndDoImmediate(chan, mySndCmd);

END;

MyPlaySampledSound := myErr;

END;

If the GetSoundHeaderOffset function is not available but you still need to obtain a
pointer to a sound header, you can use the function MyGetSoundHeaderOffset
defined in Listing 2-28. The function defined there traverses a sound resource until it
reaches the sound data. It returns, in the offset parameter, the offset in bytes from the
beginning of a sound resource to the sound header.
Using the Sound Manager 2-57

C H A P T E R 2

Sound Manager
IMPORTANT

The GetSoundHeaderOffset function is available in Sound Manager
versions 3.0 and later. As a result, you’ll need to use the techniques
illustrated in Listing 2-28 only if you want your application to find
a sound header when earlier versions of the Sound Manager
are available. ▲

Listing 2-28 Obtaining the offset in bytes to a sound header

FUNCTION MyGetSoundHeaderOffset (sndHdl: Handle; VAR offset: LongInt): OSErr;

TYPE

Snd1Header = {format 1 'snd ' resource header}

RECORD

format: Integer; {format of resource}

numSynths: Integer; {number of data types}

{synths, init option follow}

END;

Snd1HdrPtr = ^Snd1Header;

Snd2Header = {format 2 'snd ' resource header}

RECORD

format: Integer; {format of resource}

refCount: Integer; {for application use}

END;

Snd2HdrPtr = ^Snd2Header;

IntPtr = ^Integer; {for type coercion}

SndCmdPtr = ^SndCommand; {for type coercion}

VAR

myPtr: Ptr; {to navigate resource}

myOffset: LongInt; {offset into resource}

numSynths: Integer; {info about resource}

numCmds: Integer; {info about resource}

isDone: Boolean; {are we done yet?}

myErr: OSErr;

BEGIN

{Initialize variables.}

myOffset := 0; {return 0 if no sound header found}

myPtr := Ptr(sndHdl^); {point to start of resource data}

isDone := FALSE; {haven't yet found sound header}

myErr := noErr;

{Skip everything before sound commands.}

CASE Snd1HdrPtr(myPtr)^.format OF

firstSoundFormat: {format 1 'snd ' resource}

BEGIN {skip header start, synth ID, etc.}
2-58 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
numSynths := Snd1HdrPtr(myPtr)^.numSynths;

myPtr := Ptr(ORD4(myPtr) + SizeOf(Snd1Header));

myPtr := Ptr(ORD4(myPtr) +

numSynths * (SizeOf(Integer) + SizeOf(LongInt)));

END;

secondSoundFormat: {format 2 'snd ' resource}

myPtr := Ptr(ORD4(myPtr) + SizeOf(Snd2Header));

OTHERWISE {unrecognized resource format}

BEGIN

myErr := badFormat;

isDone := TRUE;

END;

END;

{Find number of commands and move to start of first command.}

numCmds := IntPtr(myPtr)^;

myPtr := Ptr(ORD4(myPtr) + SizeOf(Integer));

{Search for bufferCmd or soundCmd to obtain sound header.}

WHILE (numCmds >= 1) AND (NOT isDone) DO

BEGIN

IF (IntPtr(myPtr)^ = bufferCmd + dataOffsetFlag) OR

(IntPtr(myPtr)^ = soundCmd + dataOffsetFlag) THEN

BEGIN {bufferCmd or soundCmd found}

{copy offset from sound command}

myOffset := SndCmdPtr(myPtr)^.param2;

isDone := TRUE; {get out of loop}

END

ELSE

BEGIN {soundCmd or bufferCmd not found}

{move to next command}

myPtr := Ptr(ORD4(myPtr) + SizeOf(SndCommand));

numCmds := numCmds - 1;

END;

END; {WHILE}

offset := myOffset; {return offset}

MyGetSoundHeaderOffset := myErr; {return result code}

END;

The MyGetSoundHeaderOffset function defined in Listing 2-28 begins by initializing
several variables, including a pointer that it sets to point to the beginning of the data
contained in the sound resource. Then, after determining whether the sound resource is
Using the Sound Manager 2-59

C H A P T E R 2

Sound Manager
format 1 or format 2, the function skips data contained in the format 1 'snd ' resource
header or in the format 2 'snd ' resource header, as appropriate.

Note
Do not confuse the format 1 or format 2 'snd ' header with the sound
header the MyGetSoundHeaderOffset function defined in Listing
2-28 is designed to find. A sound header contains information about the
sampled-sound data stored in a sound resource; a sound resource
header contains information about the format of the sound resource. ◆

After skipping information in the sound resource header, MyGetSoundHeaderOffset
simply looks through all sound commands in the resource for a bufferCmd or
soundCmd command, either of which must contain the offset from the beginning of the
resource to the sound header in its param2 field. If the given sound resource contains no
sound header (and thus no sampled-sound data), the MyGetSoundHeaderOffset
function returns an error and sets the offset variable parameter to 0.

After using the MyGetSoundHeaderOffset function to obtain an offset to the sound
header, you can easily obtain a pointer to a sound header. Note, however, that because
a handle to a sound resource is contained in a relocatable block, you must lock the
relocatable block before you obtain a pointer to a sound header, and you must not
unlock it until you are through using the pointer. Listing 2-29 demonstrates how you can
convert an offset to a sound header into a pointer to a sound header after locking a
relocatable block.

Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

FUNCTION MyGetSoundHeader (sndHandle: Handle): SoundHeaderPtr;

VAR

myOffset: LongInt; {offset to sound header}

myErr: OSErr;

BEGIN

HLockHi(sndHandle); {lock data in high memory}

{compute offset to sound header}

myErr := MyGetSoundHeaderOffset(sndHandle, myOffset);

IF myErr <> noErr THEN

MyGetSoundHeader := NIL {no sound header in resource}

ELSE

{compute address of sound header}

MyGetSoundHeader := SoundHeaderPtr(ORD4(sndHandle^) + myOffset);

END;

The MyGetSoundHeader function defined in Listing 2-29 locks the sound handle you
pass it in high memory and then attempts to find an offset to the sound header in the
sound handle. If the MyGetSoundHeaderOffset function defined in Listing 2-28
returns an offset of 0, then MyGetSoundHeader returns a NIL pointer to a sound
2-60 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
header; otherwise, it returns a pointer that remains valid as long as you do not unlock
the sound handle.

The MyGetSoundHeader function returns a pointer to a sampled sound header even if
the sound header is actually an extended sound header or a compressed sound header.
Thus, before accessing any other fields of the sound header, you should test the encode
field of the sound header to determine what type of sound header it is. Then, if the
sound header is, for example, an extended sound header, cast the sampled sound header
to an extended sound header. Then you can access any of the fields of the extended
sound header. For an example of this technique, see Listing 2-16 on page 2-44.

Playing Sounds Using Low-Level Routines 2

Once you obtain a pointer to a sampled sound header, you can use the bufferCmd
sound command to play a sound without using the high-level Sound Manager routines.
Many sampled-sound resources include bufferCmd commands, so the high-level
Sound Manager routines often issue the bufferCmd command indirectly. Thus, you
might in some cases be able to make your application slightly more efficient by issuing
the bufferCmd command directly. Also, you might issue a bufferCmd command
directly if you want the Sound Manager to ignore other parts of a sound resource.

Finally, you might issue bufferCmd commands directly if you want your application to
be able to play a large sound resource without loading the entire resource at once. By
issuing several successive bufferCmd commands, you can play a large sound resource
using a small buffer. In this case, each buffer must contain a sampled sound header. In
most cases, the sound will play smoothly, without audible gaps. It’s generally easier,
however, to play large sampled sounds from disk by using the play-from-disk routines
or the SndPlayDoubleBuffer function. See “Managing Double Buffers” on page 2-147
for complete details.

Note
Using the bufferCmd command to play several consecutive
compressed samples on the Macintosh Plus, the Macintosh SE, or the
Macintosh Classic is not guaranteed to work without an audible pause
or click. ◆

The pointer in the param2 field of a bufferCmd command is the location of a sampled
sound header. A bufferCmd command is queued in the channel until the preceding
commands have been processed. If the bufferCmd command is contained within an
'snd ' resource, the high bit of the command must be set. If the sound was loaded in
from an 'snd ' resource, your application is expected to unlock this resource and allow
it to be purged after using it. Listing 2-30 shows how your application can play a
sampled sound stored in a resource using the bufferCmd command.
Using the Sound Manager 2-61

C H A P T E R 2

Sound Manager
Listing 2-30 Playing a sound using the bufferCmd command

FUNCTION MyLowLevelSampledSndPlay (chan: SndChannelPtr; sndHandle: Handle):

OSErr;

CONST

kWaitIfFull = TRUE; {wait for room in queue?}

VAR

mySndHeader: SoundHeaderPtr;

mySndCmd: SndCommand; {a sound command}

BEGIN

mySndHeader := MyGetSoundHeader(sndHandle);

WITH mySndCmd DO

BEGIN

cmd := bufferCmd; {command is bufferCmd}

param1 := 0; {unused with bufferCmd}

param2 := LongInt(mySndHeader); {pointer to sound header}

END;

IF mySndHeader <> NIL THEN

MyLowLevelSampledSndPlay :=

SndDoCommand(chan, mySndCmd, NOT kWaitIfFull)

ELSE

MyLowLevelSampledSndPlay := badFormat;

END;

For the MyLowLevelSampledSndPlay function defined in Listing 2-30 to play a sound,
the channel passed to it must already be configured to play sampled-sound data.
Otherwise, the function returns a badChannel result code. Also, because the
bufferCmd command works asynchronously, you might want to associate a callback
procedure with the sound channel when you create the channel. For more information
on playing sounds asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

You can use the bufferCmd command to handle compressed sound samples in addition
to sounds that are not compressed. To expand and play back a buffer of compressed
samples, you pass the Sound Manager a bufferCmd command where param2 points to
a compressed sound header.

To play sampled sounds that are not compressed, pass bufferCmd a standard or
extended sound header. The extended sound header can be used for stereo sampled
sounds. The standard sampled sound header is used for all other noncompressed
sampled sounds.

Finding a Chunk in a Sound File 2

Sound files are not as tightly structured as sound resources. As explained in “Sound
Files” on page 2-81, the chunks in a sound file can appear in any order, except that the
Form Chunk is always first. Most information about a sampled sound stored in a sound
file is contained in the Common Chunk. Thus, to be able to access this information, you
2-62 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
must be able to find a particular kind of chunk in a sound file. Listing 2-31 defines a
procedure that you can use to find the location of the first chunk of a specified type
beginning at the chunk you specify.

IMPORTANT

The techniques illustrated in this section are provided primarily to help
you understand the structure of sound files. Most sound-producing
applications don’t need to parse sound files. ▲

Listing 2-31 Finding a chunk in a sound file

FUNCTION MyFindChunk (myFile: Integer; {file reference number}

myChunkSought: ID; {ID of chunk sought}

startPos: LongInt; {file position to start at}

VAR chunkFPos: LongInt) {file position of found chunk}

: OSErr;

VAR

myLength: LongInt; {number of bytes to read}

myChunkHeader: ChunkHeader; {characteristics of chunk}

found: Boolean; {flag variable}

myErr: OSErr; {error from File Manager calls}

BEGIN

found := FALSE; {initialize flag variable}

{set file mark at start}

myErr := SetFPos(myFile, fsFromStart, startPos);

{Search file's chunks for desired chunk ID.}

WHILE (NOT found) AND (myErr = noErr) DO

BEGIN {check current chunk}

myLength := SizeOf(myChunkHeader);

{Load chunk header.}

myErr := FSRead(myFile, myLength, @myChunkHeader);

IF myErr = noErr THEN {chunk header loaded okay}

IF myChunkHeader.ckID = myChunkSought THEN

BEGIN

found := TRUE; {chunk has been found}

{find position in file}

myErr := GetFPos(myFile, chunkFPos);

{compute chunk's start position}

chunkFPos := chunkFPos - SizeOf(myChunkHeader);

END

ELSE

BEGIN {move to next chunk}

IF myChunkHeader.ckID = ID(FormID) THEN
Using the Sound Manager 2-63

C H A P T E R 2

Sound Manager
{Adjust Form Chunk's size to size of formType field.}

myChunkHeader.ckSize := SizeOf(ID);

IF myChunkHeader.ckSize MOD 2 = 1 THEN

{Compensate for pad byte.}

myChunkHeader.ckSize := myChunkHeader.ckSize + 1;

myErr := SetFPos(myFile, fsFromMark, myChunkHeader.ckSize);

END;

END; {WHILE}

MyFindChunk := myErr;

END;

The MyFindChunk function defined in Listing 2-31 accepts four parameters. The
myFile parameter is the file reference number of an open sound file. (For information
on file reference numbers, see Inside Macintosh: Files.) In the myChunkSought parameter,
you pass the ID of the type of chunk you wish to find. For example, you might pass
ID(FormID) to find the Form Chunk. The third parameter, startPos, is the file
position at which MyFindChunk should start searching for a chunk. This file position
must be the beginning of a chunk. To start at the beginning of a file, specify 0. Finally,
if the MyFindChunk function is successful, it returns in the chunkFPos parameter the
file position of the first chunk of the specified type that it found. If the function is
unsuccessful, it returns the appropriate File Manager result code (such as an end-of-file
error) and the chunkFPos parameter is undefined.

The MyFindChunk function works by looking at each chunk of the sound file, beginning
at the file position startPos and checking to see if the chunk is of the type sought. If a
chunk matches, the MyFindChunk function returns the file position of the start of the
chunk; otherwise, the function moves onto the next chunk. For each chunk, the
MyFindChunk function reads in the chunk header, checks for a match, and then moves
to the next chunk.

The MyFindChunk function moves from one chunk to the next by identifying the size of
the current chunk, not including the chunk header, from the ckSize field of the chunk
header. Whenever you parse sound files, you should always use the ckSize field of the
chunk header to determine the size of a chunk if the size of the chunk could vary in size.
The MyFindChunk function adjusts the value in the ckSize field before advancing to
the next chunk in two cases. First, the ckSize field for the Form Chunk reflects the size
of the entire sound file, so this function changes it to the size of the formType field so
that the function does not skip the file’s local chunks. Second, if the ckSize field is odd,
1 byte is added because the number of bytes in a chunk is always even.

After using the MyFindChunk function defined in Listing 2-31, you might still need to
read the data contained in a chunk into memory. For example, you might read in the
Form and Common Chunks to obtain information about a sound file. Listing 2-32 uses
the MyFindChunk function to find a chunk in a sound file, allocates an appropriately
sized block of memory for that chunk, and reads the chunk into that block.
2-64 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Listing 2-32 Loading a chunk from a sound file

FUNCTION MyGetChunkData (myFile: Integer; {file reference number}

myChunkSought: ID; {ID of chunk sought}

startPos: LongInt): {file position to start at}

Ptr; {pointer to data or NIL}

VAR

myFPos: LongInt; {position in file}

myLength: LongInt; {number of bytes to read}

myChunkHeader: ChunkHeader; {characteristics of a chunk}

myChunkData: Ptr; {pointer to chunk data}

myErr: OSErr;

BEGIN

myChunkData := NIL; {initialize variable}

myErr := MyFindChunk(myFile, myChunkSought, startPos, myFPos);

IF myErr = noErr THEN

{move to start of chunk}

myErr := SetFPos(myFile, fsFromStart, myFPos);

IF myErr = noErr THEN

BEGIN {determine how much data to copy}

myLength := SizeOf(ChunkHeader);

myErr := FSRead(myFile, myLength, @myChunkHeader);

IF myChunkHeader.ckID = ID(FormID) THEN

myChunkHeader.ckSize := SizeOf(ID); {don't return local chunks}

myLength := myChunkHeader.ckSize + SizeOf(ChunkHeader);

IF myErr = noErr THEN

{return to chunk's start}

myErr := SetFPos(myFile, fsFromStart, myFPos);

END;

IF myErr = noErr THEN

BEGIN {read chunk data into RAM}

myChunkData := NewPtr(myLength);

IF myChunkData <> NIL THEN

myErr := FSRead(myFile, myLength, myChunkData);

END;

IF myErr <> noErr THEN

IF myChunkData <> NIL THEN

DisposePtr(myChunkData);

MyGetChunkData := myChunkData;

END;

The MyGetChunkData function defined in Listing 2-32 attempts to find a chunk in a file.
If it finds the chunk, it reads the chunk header to determine the chunk’s size, and if the
chunk is the Form Chunk, adjusts the chunk size so that the sound file’s local chunks are
Using the Sound Manager 2-65

C H A P T E R 2

Sound Manager
not included in the chunk size. Then the function attempts to allocate memory for the
chunk and read the chunk into the memory. If a problem occurs at any time, the function
simply returns NIL.

Note
The format of a sound file might not be the same as its operating-system
type. In particular, a file might have an operating-system type 'AIFC'
but be formatted as an AIFF file because the sampled-sound data
contained in the file is noncompressed. ◆

Compressing and Expanding Sounds 2
Some of the capabilities provided by MACE are transparently available to your
application. For example, if you pass the SndPlay function a handle to an 'snd '
resource that contains a compressed sampled sound, the Sound Manager automatically
expands the sound data for playback in real time. Your application does not need to
know whether the 'snd ' resource contains compressed or noncompressed samples
when it calls SndPlay. This is because sufficient information is in the resource itself to
allow the Sound Manager to determine whether it should expand the data samples.

However, aside from expansion playback, all of the MACE capabilities need to be
specifically requested by your application. For example, you can use the procedure
Comp3to1 or Comp6to1 if you want to compress a sampled sound (for example, to
create an 'snd ' resource containing compressed audio data). You can use the
procedures Exp1to3 and Exp1to6 to expand compressed audio data.

All of these procedures require you to specify both an input and an output buffer,
from and to which the sampled-sound data to be converted is read and written. Your
application must allocate the appropriate amount of storage for each buffer. For
example, if you want to expand a buffer of compressed monophonic sampled-sound
data by using Exp1to6, the output buffer must be at least six times the size of the
input buffer.

The MACE compression and expansion routines can work on only one channel of sound.
The numChannels parameter of all four procedures allows you to specify how many
channels are in the original sample, and the whichChannel parameter allows you to
specify which channel you wish to compress or expand. Because the MACE routines can
compress or expand only one channel of sound, you must make adjustments when
allocating an output buffer for stereo sound. For example, if you are compressing
two-channel sound using the Comp3to1 procedure, your output buffer need only be
one-sixth the size of your input buffer.

Often when compressing polyphonic sound, being able to compress only one channel is
not a problem, because you lose sound quality during compression anyway. However,
you might at times wish to maintain more than one channel of a multichannel sound
even after compression and expansion. For example, two channels of a stereo sound
might be quite different and might both be necessary to achieve a full sound after
expansion. In these cases, you can compress each channel of a multichannel sound
individually and then manually interleave the samples on a packet basis. When you
2-66 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
expand polyphonic compressed sound data, you must interleave the channels of sound
on a sample frame basis.

The MACE routines work only with sampled-sound data in offset binary format. If you
are compressing data in a sound file, you must convert that data from linear, two’s
complement format to binary offset format before compression.

When calling the MACE routines, you can also specify addresses of two small buffers
(128 bytes each) that the Sound Manager uses to maintain state information about the
compression or expansion process. When you first call a MACE routine, the state buffers
should be filled with zeros to initialize the state information. When you subsequently
call another MACE routine, you can use the same state buffers. You can pass NIL for
both buffers if you do not want to save state information across calls to the MACE
routines. Listing 2-33 illustrates the use of the Comp3to1 procedure when using
state buffers.

Listing 2-33 Compressing audio data

PROCEDURE MyCompressBy3 (inBuf: Ptr; outBuf: Ptr; numSamp: LongInt);

CONST

kStateBufferSize = 128;

VAR

myInState: Ptr; {input state buffer}

myOutState: Ptr; {output state buffer}

BEGIN

myInState := NewPtrClear(kStateBufferSize);

myOutState := NewPtrClear(kStateBufferSize);

IF (myInState <> NIL) AND (myOutState <> NIL) THEN

Comp3to1(inBuf, outBuf, numSamp, myInState, myOutState, 1, 1);

END;

Because the last two parameters (numChannels and whichChannel) are both set to 1,
MyCompressBy3 compresses monophonic audio data.

In practice, compressing a sound resource or sound file is considerably more complex
than calling the MyCompressBy3 procedure defined in Listing 2-33. To compress a
sound resource containing monophonic sampled-sound data, you would need to

■ load the data into a handle and lock the handle

■ ensure that the data in the handle is not already compressed by examining the sound
header

■ find a pointer to the sampled-sound data by examining the samplePtr field of the
sound header

■ allocate an output buffer of the appropriate size, taking into account that only one
channel of the original data can be compressed

■ compress the sampled-sound data by calling the Comp3To1 procedure
Using the Sound Manager 2-67

C H A P T E R 2

Sound Manager
■ determine the size that the header information (including, for example, sound
commands and the sampled sound header excluding the sampled-sound data itself)
will take in the resource by using the Sound Input Manager’s SetupSndHeader
function to create a sound resource header and sampled sound header with the
same sample rate, base frequency, and other characteristics as the original
sampled-sound data

■ resize the handle so that it is large enough to contain both the non–sampled-sound
data information and the compressed sound data

■ fill this handle by first calling SetupSndHeader once again and by then copying the
compressed sound data to the end of the header information

■ update the resource file

Techniques for compressing sound files and for expanding both sound resources and
sound files are analogous to that sketched here. Remember that after compressing or
expanding each channel of polyphonic sampled-sound data, you must interleave frames
of sound data, on a packet basis after compression or on a sample basis after expansion.

Using Double Buffers 2
The play-from-disk routines make extensive use of the SndPlayDoubleBuffer
function. You can use this function in your application directly if you wish to bypass the
normal play-from-disk routines. You might want to do this to maximize the efficiency of
your application while maintaining compatibility with the Sound Manager. Or, you
might define your own double-buffering routines so that your application can convert
16-bit sound data on disk to 8-bit data that all versions of the Sound Manager can play.
By using SndPlayDoubleBuffer instead of the normal play-from-disk routines, you
can specify your own doubleback procedure (that is, the algorithm used to switch back
and forth between buffers) and customize several other buffering parameters.

IMPORTANT

SndPlayDoubleBuffer is a very low-level routine and is not intended
for general use. In most cases, you should use the high-level Sound
Manager routines (such as SndPlay or SndStartFilePlay) or
standard sound commands (such as bufferCmd) to play sounds.
You should use SndPlayDoubleBuffer only if you require very
fine control over double buffering. Remember also that the
SndPlayDoubleBuffer function is not always available. You’ll need
to ensure that it’s available in the current operating environment before
calling it. See “Testing for Multichannel Sound and Play-From-Disk
Capabilities” beginning on page 2-35 for details. ▲

You call SndPlayDoubleBuffer by passing it a pointer to a sound channel (into which
the double-buffered data is to be written) and a pointer to a sound double buffer header
record. Here’s an example:

myErr := SndPlayDoubleBuffer(mySndChan, @myDoubleHeader);

A sound double buffer header record has the following structure:
2-68 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
TYPE SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

The values for the dbhCompressionID, dbhNumChannels, and dbhPacketSize
fields are the same as those for the compressionID, numChannels, and packetSize
fields of the compressed sound header, respectively.

The dbhBufferPtr array contains pointers to two records of type SndDoubleBuffer.
These are the two buffers between which the Sound Manager switches until all
the sound data has been sent into the sound channel. When the call to
SndPlayDoubleBuffer is made, the two buffers should both already contain
a nonzero number of frames of data.

IMPORTANT

The Sound Manager defines the data type SndDoubleBufferHeader2
that is identical to the SndDoubleBufferHeader data type except that
it contains the dbhFormat field (of type OSType) that defines a custom
codec to be used to decompress the sound data. The dbhFormat field is
used only if the dbhCompressionID field contains the value
fixedCompression. See “Sound Double Buffer Header Records”
beginning on page 2-111 for details. ▲

Here is the structure of a sound double buffer:

TYPE SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt;

{for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte;

{array of data}

END;

The buffer status flags field for each of the two buffers might contain either of
these values:
Using the Sound Manager 2-69

C H A P T E R 2

Sound Manager
CONST

dbBufferReady = $00000001;

dbLastBuffer = $00000004;

All other bits in the dbFlags field are reserved by Apple; your application should not
modify them.

The following two sections illustrate how to fill out these data structures, create your
two buffers, and define a doubleback procedure to refill the buffers when they
become empty.

Setting Up Double Buffers 2

Before you can call SndPlayDoubleBuffer, you need to allocate two buffers (of type
SndDoubleBuffer), fill them both with data, set the flags for the two buffers to
dbBufferReady, and then fill out a record of type SndDoubleBufferHeader with the
appropriate information. Listing 2-34 illustrates how you can accomplish these tasks.

Listing 2-34 Setting up double buffers

CONST

kDoubleBufferSize = 4096; {size of each buffer (in bytes)}

TYPE

LocalVars = {variables used by the doubleback procedure}

RECORD

bytesTotal: LongInt; {total number of samples}

bytesCopied: LongInt; {number of samples copied to buffers}

dataPtr: Ptr; {pointer to sample to copy}

END;

LocalVarsPtr = ^LocalVars;

{This function uses SndPlayDoubleBuffer to play the sound specified.}

FUNCTION MyDBSndPlay (chan: SndChannelPtr; sndHeader: SoundHeaderPtr): OSErr;

VAR

myVars: LocalVars;

myDblHeader: SndDoubleBufferHeader;

myDblBuffer: SndDoubleBufferPtr;

myStatus: SCStatus;

myIndex: Integer;

myErr: OSErr;

BEGIN

{Set up myVars with initial information.}

myVars.bytesTotal := sndHeader^.length;

myVars.bytesCopied := 0; {no samples copied yet}

myVars.dataPtr := Ptr(@sndHeader^.sampleArea[0]);
2-70 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
{pointer to first sample}

{Set up SndDoubleBufferHeader.}

WITH myDblHeader DO

BEGIN

dbhNumChannels := 1; {one channel}

dbhSampleSize := 8; {8-bit samples}

dbhCompressionID := 0; {no compression}

dbhPacketSize := 0; {no compression}

dbhSampleRate := sndHeader^.sampleRate;

dbhDoubleBack := @MyDoubleBackProc;

END;

FOR myIndex := 0 TO 1 DO {initialize both buffers}

BEGIN

{Get memory for double buffer.}

myDblBuffer := SndDoubleBufferPtr(NewPtr(Sizeof(SndDoubleBuffer) +

 kDoubleBufferSize));

IF myDblBuffer = NIL THEN

BEGIN

MyDBSndPlay := MemError;

Exit(MyDBSndPlay);

END;

myDblBuffer^.dbNumFrames := 0; {no frames yet}

myDblBuffer^.dbFlags := 0; {buffer is empty}

myDblBuffer^.dbUserInfo[0] := LongInt(@myVars);

{Fill buffer with samples.}

MyDoubleBackProc(sndChan, myDblBuffer);

{Store buffer pointer in header.}

myDblHeader.dbhBufferPtr[myIndex] := myDblBuffer;

END;

{Start the sound playing.}

myErr := SndPlayDoubleBuffer(sndChan, @myDblHeader);

IF myErr <> noErr THEN

BEGIN

MyDBSndPlay := myErr;

Exit(MyDBSndPlay);

END;

{Wait for the sound's end by checking the channel status.}

REPEAT
Using the Sound Manager 2-71

C H A P T E R 2

Sound Manager
myErr := SndChannelStatus(chan, sizeof(myStatus), @status);

UNTIL NOT myStatus.scChannelBusy;

{Dispose double buffer memory.}

FOR myIndex := 0 TO 1 DO

DisposePtr(Ptr(myDblHeader.dbhBufferPtr[myIndex]));

MyDBSndPlay := noErr;

END;

The function MyDBSndPlay takes two parameters, a pointer to a sound channel and a
pointer to a sound header. For information about obtaining a pointer to a sound header,
see “Obtaining a Pointer to a Sound Header” on page 2-57. The MyDBSndPlay function
reads the sound header to determine the characteristics of the sound to be played (for
example, how many samples are to be sent into the sound channel). Then MyDBSndPlay
fills in the fields of the double buffer header, creates two buffers, and starts the sound
playing. The doubleback procedure MyDoubleBackProc is defined in the next section.

Writing a Doubleback Procedure 2

The dbhDoubleBack field of a double buffer header specifies the address of a
doubleback procedure, an application-defined procedure that is called when the double
buffers are switched and the exhausted buffer needs to be refilled. The doubleback
procedure should have this format:

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

exhaustedBuffer: SndDoubleBufferPtr);

The primary responsibility of the doubleback procedure is to refill an exhausted buffer
of samples and to mark the newly filled buffer as ready for processing. Listing 2-35
illustrates how to define a doubleback procedure. Note that the sound channel pointer
passed to the doubleback procedure is not used in this procedure.

This doubleback procedure extracts the address of its local variables from the
dbUserInfo field of the double buffer record passed to it. These variables are used to
keep track of how many total bytes need to be copied and how many bytes have been
copied so far. Then the procedure copies at most a bufferfull of bytes into the empty
buffer and updates several fields in the double buffer record and in the structure
containing the local variables. Finally, if all the bytes to be copied have been copied,
the buffer is marked as the last buffer.

Note
Because the doubleback procedure is called at interrupt time, it cannot
make any calls that move memory either directly or indirectly. (Despite
its name, the BlockMove procedure does not cause blocks of memory to
move or be purged, so you can safely call it in your doubleback
procedure, as illustrated in Listing 2-35.) ◆
2-72 Using the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Listing 2-35 Defining a doubleback procedure

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

doubleBuffer: SndDoubleBufferPtr);

VAR

myVarsPtr: LocalVarsPtr;

myNumBytes: LongInt;

BEGIN

{Get pointer to my local variables.}

myVarsPtr := LocalVarsPtr(doubleBuffer^.dbUserInfo[0]);

{Get number of bytes left to copy.}

myNumBytes := myVarsPtr^.bytesTotal - myVarsPtr^.bytesCopied;

{If the amount left is greater than double buffer size, limit the number }

{ of bytes to copy to the size of the buffer.}

IF myNumBytes > kDoubleBufferSize THEN

myNumBytes := kDoubleBufferSize;

{Copy samples to double buffer.}

BlockMove(myVarsPtr^.dataPtr, @doubleBuffer^.dbSoundData[0], myNumBytes);

{Store number of samples in buffer and mark buffer as ready.}

doubleBuffer^.dbNumFrames := myNumBytes;

doubleBuffer^.dbFlags := BOR(doubleBuffer^.dbFlags, dbBufferReady);

{Update data pointer and number of bytes copied.}

myVarsPtr^.dataPtr := Ptr(ORD4(myVarsPtr^.dataPtr) + myNumBytes);

myVarsPtr^.bytesCopied := myVarsPtr^.bytesCopied + myNumBytes;

{If all samples have been copied, then this is the last buffer.}

IF myVarsPtr^.bytesCopied = myVarsPtr^.bytesTotal THEN

doubleBuffer^.dbFlags := BOR(doubleBuffer^.dbFlags, dbLastBuffer);

END;

Sound Storage Formats 2

This section describes in detail the formats of sound resources and sound files, which are
the two principal storage formats for sound data on Macintosh computers. In general, an
application that uses the services provided by the Sound Manager and the Sound Input
Manager to play and record sounds does not need to know how the sound data is
Sound Storage Formats 2-73

C H A P T E R 2

Sound Manager
organized in memory or on disk. For some special purposes, however, you might need
the information in this section.

Sound Resources 2
A sound resource is a resource of type 'snd ' that contains sound commands and
possibly also sound data. Sound resources are widely used by Macintosh applications
that produce sounds. These resources provide a simple and portable way for you to
incorporate sounds into your application. For example, the sounds that a user can select
in the Sound control panel as the system alert sound are stored in the System file as
'snd ' resources.

There are two types of 'snd ' resources, known as format 1 and format 2. Figure 2-4
illustrates the structures of both kinds of 'snd ' resources.

Figure 2-4 The structure of 'snd ' resources

IMPORTANT

The format 2 'snd ' resource is obsolete. Your application should
create only format 1 'snd ' resources. The format 2 'snd ' resource
was designed for use by HyperCard and can be used with
sampled-sound data only. ▲

Format 2

Init option for channel 4

First data format ID 2

Number of data formats 2

Number of sound commands 2

First sound command 8

Last sound command 8

Sampled-sound data

or wave-table data VariableOptional

These fields

may be

absent if

"Number of

data formats"

is 0

Format 2

Number of sound commands 2

Reference count 2

First sound command 8

Last sound command 8

Sampled-sound data Variable

'snd ' format 1

'snd ' format 2
2-74 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Resource IDs for 'snd ' resources in the range 0 to 8191 are reserved for use by
Apple Computer, Inc. The 'snd ' resources numbered 1 through 4 are defined to be
the standard system alert sounds, although more recent versions of system software
have included more standard system alert sounds.

When a sound command contained in an 'snd ' resource has associated sound data,
the high bit of the command is set. This changes the meaning of the param2 field of the
command from a pointer to a location in RAM to an offset value that specifies the offset
in bytes from the resource’s beginning to the location of the associated sound data (such
as a sampled sound header). Figure 2-5 illustrates the location of this data offset bit.

Figure 2-5 The location of the data offset bit

The offset bit is used only by sound commands that are stored in sound resources of
type 'snd ' and that have associated sound data (that is, sampled-sound or
wave-table data).

You can use a constant to access that flag.

CONST

dataOffsetFlag = $8000; {sound command data offset bit}

If the dataOffsetFlag bit is not set, param2 is interpreted instead as a pointer to the
location in memory (outside the sound resource) where the data is located.

The first few bytes of the resource contain 'snd ' header information and are a
different size for each format. An audio data type specified in a format 1 'snd '
requires 6 bytes. The number of data types multiplied by 6 is added to this offset. The
number of commands multiplied by 8 bytes, the size of a sound command, is added to
the offset.

The Format 1 Sound Resource 2

Figure 2-4 shows the fields of a format 1 'snd ' resource. A format 1 'snd ' resource
header contains information about the format of the resource (namely, 1), the data type,
and the initialization options for that data type. A format 1 'snd ' resource contains
sound commands and might also contain the actual sound data for wave-table sounds or
sampled sounds. Note that if a sound resource includes sampled-sound data, then part
of the sound data section is devoted to a sound header that describes the sampled-sound
data in the remainder of the sound data section.

Word Word Long word

Data offset bit (used by 'snd ' resource only)

cmd param1 param2

Sound Storage Formats 2-75

C H A P T E R 2

Sound Manager
If an 'snd ' resource specifies a data type, it can supply an initialization option in the
field immediately following the type. You specify the number of commands in the
resource in the number of sound commands field. The sound commands follow, in the
order in which they should be sent to the sound channel.

The format 1 'snd ' resource might contain only a sequence of commands describing a
sound. In this case, the number of data types should be 0, and there should be no data
type specification or initialization option in the 'snd ' resource. This allows the
'snd ' resource to be used with any kind of sound data.

Listing 2-36 shows the output of the MPW tool DeRez when applied to the 'snd '
resource with resource ID 1 contained in the System file.

Listing 2-36 A format 1 'snd ' resource

data 'snd ' (1, "Simple Beep", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0001" /*square-wave data*/

$"00000000" /*initialization option*/

/*the sound commands*/

$"001B" /*number of sound commands (27)*/

$"002C" /*command 1--timbreCmd 090 000*/

$"005A00000000"

$"002B" /*command 2--ampCmd 224 000*/

$"00E000000000"

$"002A" /*command 3--freqCmd 000 069*/

$"000000000045"

$"000A" /*command 4--waitCmd 040 000*/

$"002800000000"

$"002B" /*command 5--ampCmd 200 000*/

$"00C800000000"

/*commands 6 through 26 are omitted; they are */

/* alternating pairs of waitCmd and ampCmd commands */

/* where the first parameter of ampCmd has the */

/* values 192, 184, 176, 168, 160, 144, 128, 96, */

/* 64, and 32*/

$"002B" /*command 27--ampCmd 000 000*/

$"000000000000"

};

As you can see, the Simple Beep is actually a rather sophisticated sound, in which the
loudness (or amplitude) of the beep gradually decreases from an initial value of 224 to 0.
2-76 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Notice that the sound shown in Listing 2-36 is defined using square-wave data and is
completely determined by a sequence of specific commands. (“Play an A at loudness
224, wait 20 milliseconds, play it at loudness 200....”) Often, an 'snd ' resource consists
only of a single sound command (usually the bufferCmd command) together with data
that describes a sampled sound to be played. Listing 2-37 shows an example like this.

Listing 2-37 A format 1 'snd ' resource containing sampled-sound data

data 'snd ' (19068, "hello daddy", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0005" /*sampled-sound data*/

$"00000080" /*initialization option: initMono*/

/*the sound commands*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*command 1--bufferCmd*/

$"0000" /*param1 = 0*/

$"00000014" /*param2 = offset to sound header (20 bytes)*/

/*the sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000BB8" /*number of bytes in sample (3000 bytes)*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sample's loop point*/

$"00000898" /*ending of the sample's loop point*/

$"00" /*standard sample encoding*/

$"3C" /*baseFrequency at which sample was taken*/

/*the sampled-sound data*/

$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"

$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C"

$"7C 7C 7D 7D 7D 7D 7E 7F 80 80 81 81 82 82 83 83"

$"83 83 82 81 81 80 80 81 81 81 81 81 82 81 81 80"

$"80 80 81 81 81 83 83 83 82 81 81 80 7F 7E 7D 7D"

$"7F 7F 7F 7F 7E 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 80"

/*rest of data omitted in this example*/

};

This 'snd ' resource indicates that the sound is defined using sampled-sound data. The
resource includes a call to a single sound command, the bufferCmd command. The
offset bit of the command number is set to indicate that the sound data is contained in
the resource itself. Following the command and its two parameters is the sampled sound
header, the first part of which contains important information about the sample. The
second parameter to the bufferCmd command indicates the offset from the beginning
of the resource to the sampled sound header, in this case 20 bytes. After the sound
Sound Storage Formats 2-77

C H A P T E R 2

Sound Manager
commands, this resource includes a sampled sound header, which includes the
sampled-sound data. The format of a sampled sound header is described in “Sound
Header Records” on page 2-104.

For compressed sound data, the sampled sound header is replaced by a compressed
sampled sound header. Listing 2-38 illustrates the structure of an 'snd ' resource that
contains compressed sound data.

Listing 2-38 An 'snd ' resource containing compressed sound data

data 'snd ' (9004, "Raisa's Cry", purgeable) {

/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*number of data types*/

$"0005" /*first data type*/

$"00000380" /*initialization option: initMACE3 + initMono*/

/*the sound command*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*cmd: bufferCmd*/

$"0000" /*param1: unused*/

$"00000014" /*param2: offset to sound header (20 bytes)*/

/*the compressed sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000001" /*number of channels in sample*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"00000000" /*starting of the sample's loop point; not used*/

$"00000000" /*ending of the sample's loop point; not used*/

$"FE" /*compressed sample encoding*/

$"00" /*baseFrequency; not used*/

$"00006590" /*number of frames in sample (26,000)*/

$"400DADDD1745D145826B"

/*AIFFSampleRate (22 kHz in extended type)*/

$"00000000" /*markerChunk; NIL for 'snd ' resource*/

$"4D414333" /*format; MACE 3:1 compression*/

$"00000000" /*futureUse2; NIL for 'snd ' resource*/

$"00000000" /*stateVars; NIL for 'snd ' resource*/

$"00000000" /*leftOverBlockPtr; not used here*/

$"FFFF" /*compressionID, -1 means use format field*/

$"0010" /*packetSize, packetSize for 3:1 is 16 bits*/

$"0000" /*snthID is 0*/

$"0008" /*sampleSize, sound was 8-bit before processing*/

$"2F 85 81 32 64 87 33 86" /*the compressed sound data*/

$"6F 48 6D 65 72 6B 82 88"

$"91 FE 8D 8E 86 4E 7C E9"
2-78 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
$"6F 6D 71 70 7E 79 4F 83"

$"59 8F 8F 65" /*rest of data omitted in this example*/

};

This resource has the same general structure as the 'snd ' resource illustrated in
Listing 2-36. The principal difference is that the standard sound header is replaced by
the compressed sound header. This example resource specifies a monophonic sound
compressed by using the 3:1 compression algorithm. A multichannel compressed
sound’s data would be interleaved on a packet basis. See “Compressed Sound Header
Records” beginning on page 2-108 for a complete explanation of the compressed sound
header.

As you’ve seen, it is not always necessary to specify 'snd ' resources by listing the raw
data stream contained in them; indeed, for certain types of format 1 'snd ' resources, it
can be easier to supply a resource specification like the one given in Listing 2-39.

Listing 2-39 A resource specification

resource 'snd ' (9000, "Nathan's Beep", purgeable) {

FormatOne {

{ /*array of data types: 1 element*/

/*[1]*/

squareWaveSynth, 0

}

},

{ /*array SoundCmnds: 3 elements*/

/*[1]*/ noData, timbreCmd {90},

/*[2]*/ noData, freqDurationCmd {480, $00000045},

/*[3]*/ noData, quietCmd {},

},

{ /*array DataTables: 0 elements*/

};

};

When you pass a handle to this resource to the SndPlay function, three commands are
executed by the Sound Manager: a timbreCmd command, a freqDurationCmd
command, and a quietCmd command. The sound specified in Listing 2-39 is just like the
Simple Beep, except that there is no gradual reduction in the loudness. Listing 2-40
shows a resource specification for the Simple Beep.

Listing 2-40 A resource specification for the Simple Beep

resource 'snd ' (9001, "Copy of Simple Beep", purgeable) {

FormatOne {

{ /*array of data types: 1 element*/
Sound Storage Formats 2-79

C H A P T E R 2

Sound Manager
/*[1]*/

squareWaveSynth, 0

}

},

{ /*array SoundCmnds: 27 elements*/

/*[1]*/ nodata, timbreCmd {90},

/*[2]*/ nodata, ampCmd {224},

/*[3]*/ nodata, freqCmd {69},

/*[4]*/ nodata, waitCmd {40},

/*[5]*/ nodata, ampCmd {200},

/*[6]*/ nodata, waitCmd {40},

/*[7]*/ nodata, ampCmd {192},

/*[8]*/ nodata, waitCmd {40},

/*[9]*/ nodata, ampCmd {184},

/*[10]*/ nodata, waitCmd {40},

/*[11]*/ nodata, ampCmd {176},

/*[12]*/ nodata, waitCmd {40},

/*[13]*/ nodata, ampCmd {168},

/*[14]*/ nodata, waitCmd {40},

/*[15]*/ nodata, ampCmd {160},

/*[16]*/ nodata, waitCmd {40},

/*[17]*/ nodata, ampCmd {144},

/*[18]*/ nodata, waitCmd {40},

/*[19]*/ nodata, ampCmd {128},

/*[20]*/ nodata, waitCmd {40},

/*[21]*/ nodata, ampCmd {96},

/*[22]*/ nodata, waitCmd {40},

/*[23]*/ nodata, ampCmd {64},

/*[24]*/ nodata, waitCmd {40},

/*[25]*/ nodata, ampCmd {32},

/*[26]*/ nodata, waitCmd {40},

/*[27]*/ nodata, ampCmd {0},

},

{ /*array DataTables: 0 elements*/

}

};

The Format 2 Sound Resource 2

The SndPlay function can also play format 2 'snd ' resources, which are designed
for use only with sampled sounds. The SndPlay function supports this format by
automatically opening a sound channel and using the bufferCmd command to send the
data contained in the resource to the channel.
2-80 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Figure 2-4 illustrates the fields of a format 2 'snd ' resource. The reference count field
is for your application’s use and is not used by the Sound Manager. The number of
sound commands field and the sound command fields are the same as described in a
format 1 resource. The last field of this resource contains the sampled sound. The first
command should be either a soundCmd command or bufferCmd command with the
data offset bit set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2
'snd ' resource.

Listing 2-41 A format 2 'snd ' resource

data 'snd ' (9003, "Pig Squeal", purgeable) {

/*the sound resource header*/

$"0002" /*format type*/

$"0000" /*reference count for application's use*/

/*the sound command*/

$"0001" /*number of sound commands that follow (1)*/

$"8051" /*command 1--bufferCmd*/

$"0000" /*param1 = 0*/

$"0000000E" /*param2 = offset to sound header (14 bytes)*/

/*the sampled sound header*/

$"00000000" /*pointer to data (it follows immediately)*/

$"00000BB8" /*number of bytes in sample (3000 bytes)*/

$"56EE8BA3" /*sampling rate of this sound (22 kHz)*/

$"000007D0" /*starting of the sample's loop point*/

$"00000898" /*ending of the sample's loop point*/

$"00" /*standard sample encoding*/

$"3C" /*baseFrequency at which sample was taken*/

$"80 80 81 82 84 87 93 84" /*the sampled-sound data*/

$"6F 68 6D 65 72 7B 82 88"

$"91 8E 8D 8F 86 7E 7C 79"

$"6F 6D 71 70 70 79 7F 81"

$"89 8F 8D 8B" /*rest of data omitted in this example*/

};

Note
Remember that format 2 'snd ' resources are obsolete. You should
create only format 1 'snd ' resources. ◆

Sound Files 2
This section describes in detail the structure of AIFF and AIFF-C files. Both of these types
of sound files are collections of chunks that define characteristics of the sampled sound
or other relevant data about the sound.
Sound Storage Formats 2-81

C H A P T E R 2

Sound Manager
Note
Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record
AIFF and AIFF-C files without knowing the details of the AIFF and
AIFF-C file formats, as explained in the chapter “Introduction to Sound
on the Macintosh” in this book. Thus, the information in this section is
for advanced programmers only. ◆

Currently, the AIFF and AIFF-C specifications include the following chunk types.

The following sections document the four principal kinds of chunks that can occur in
AIFF and AIFF-C files.

Chunk Organization and Data Types 2

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a
Common Chunk that specifies important parameters of the sampled sound, such as its
size and sample rate. There is also a Sound Data Chunk that contains the actual audio
samples. A chunk consists of some header information followed by some data. The

Chunk type Description

Form Chunk Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Format Version Chunk Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFF-C only).

Common Chunk Contains information about the sampled sound such as
the sampling rate and sample size.

Sound Data Chunk Contains the sample frames that comprise the
sampled sound.

Marker Chunk Contains markers that point to positions in the sound data.

Comments Chunk Contains comments about markers in the file.

Sound Accelerator Chunk Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Instrument Chunk Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

MIDI Data Chunk Contains MIDI data.

Audio Recording Chunk Contains information pertaining to audio recording
devices.

Application Specific
Chunk

Contains application-specific information.

Name Chunk Contains the name of the sampled sound.

Author Chunk Contains one or more names of the authors (or creators) of
the sampled sound.

Copyright Chunk Contains a copyright notice for the sampled sound.

Annotation Chunk Contains a comment.
2-82 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
header information consists of a chunk ID number and a number that indicates the size
of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

Figure 2-6 The general structure of a chunk

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

The ckID field specifies the chunk type. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII value $20) through
'~' (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are
allowed. Control characters are not allowed. You can specify values for the four types of
chunks described later by using these constants:

CONST

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

The ckSize field specifies the size of the data portion of a chunk and does not include
the length of the chunk header information.

The Form Chunk 2

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk. The
Form Chunk defines the type and size of the file and holds all remaining chunks in the
file. The chunk ID for this container chunk is 'FORM'.

data bytes

header info
ckID

ckSize

data
Sound Storage Formats 2-83

C H A P T E R 2

Sound Manager
A chunk of type 'FORM' has this structure:

TYPE ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

For a Form Chunk, the ckSize field contains the size of the data portion of this chunk.
Note that the data portion of a Form Chunk is divided into two parts, formType and the
rest of the chunks of the file, which follow the formType field. These chunks are called
local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application
should be designed to get a local chunk, identify it, and then process it without making
any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The formType field of the Form Chunk specifies the format of the file. For AIFF files,
formType is 'AIFF'. For AIFF-C files, formType is 'AIFC'. Note that this type might
not be the same as the operating-system type with which the File Manager identifies the
file. In particular, a file of operating-system type 'AIFC' might be formatted as an AIFF
file.

The Format Version Chunk 2

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version
Chunk contains a timestamp field that indicates when the format version of this
AIFF-C file was defined. This in turn indicates what format rules this file conforms to
and allows you to ensure that your application can handle a particular AIFF-C file. Every
AIFF-C file must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4}

timestamp: LongInt; {date of format version}

END;

Note
In AIFF files, there is no Format Version Chunk. ◆

The timestamp field indicates when the format version for this kind of file was created.
The value indicates the number of seconds since January 1, 1904, following the normal
time conventions used by the Macintosh Operating System. (See the chapter on date and
2-84 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
time utilities in Inside Macintosh: Operating System Utilities for several routines that allow
you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.
The format version time stamp indicates the time of creation of the version of the format
according to which this file is structured. Because Apple defines the formats of AIFF-C
files, only Apple can change this value. The current version is defined by a constant:

CONST

AIFCVersion1 = $A2805140; {May 23, 1990, 2:40 p.m.}

The Common Chunk 2

Every AIFF and AIFF-C file must contain a Common Chunk that defines some
fundamental characteristics of the sampled sound contained in the file. Note that the
format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you
need to determine the type of file format (by inspecting the formType field of the
Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

For AIFF-C files, the Common Chunk has this structure:

TYPE ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

The fields that exist in both types of Common Chunk have the following meanings:
Sound Storage Formats 2-85

C H A P T E R 2

Sound Manager
The numChannels field of both types of Common Chunk indicate the number of audio
channels contained in the sampled sound. A value of 1 indicates monophonic sound, a
value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.
Any number of audio channels may be specified. The actual sound data is stored
elsewhere, in the Sound Data Chunk.

The numSampleFrames field indicates the number of sample frames in the Sound Data
Chunk. Note that this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed sound data, the
total number of sample points in the file is numChannels * numSampleFrames. (For
more information on sample points, see “Sampled-Sound Data” on page 2-9.)

The sampleSize field indicates the number of bits in each sample point of
noncompressed sound. Although the field can contain any integer from 1 to 32, the
Sound Manager currently supports only 8- and 16-bit sound. For compressed sound
data, this field indicates the number of bits per sample in the original sound data, before
compression.

The sampleRate field contains the sample rate at which the sound is to be played back,
in sample frames per second. For a list of common sample rates, see Table 2-1 on
page 2-16.

An AIFF-C Common Chunk includes two fields that describe the type of compression
(if any) used on the audio data. The compressionType field contains the type of the
compression algorithm, if any, used on the sound data. Here are the currently available
compression types and their associated compression names:

CONST

{compression types}

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6';

You can define your own compression types, but you should register them with Apple.

Finally, the compressionName field contains a human-readable name for the
compression algorithm ID specified in the compressionType field. Compression
names for Apple-supplied codecs are defined by constants:

CONST

{compression names}

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';
2-86 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
This string is useful when putting up alert boxes (perhaps because a necessary
decompression routine is missing). Pad the end of this array with a byte having the value
0 if the length of this array is not an even number (but do not include the pad byte in the
count).

The Sound Data Chunk 2

The Sound Data Chunk contains the actual sample frames that make up the sampled
sound. The Sound Data Chunk has this structure:

TYPE SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

The offset field indicates an offset (in bytes) to the beginning of the first sample frame
in the chunk data. Most applications do not need to use the offset field and should set
it to 0.

The blockSize field contains the size (in bytes) of the blocks to which the sound data
is aligned. This field is used in conjunction with the offset field for aligning sound
data to blocks. As with the offset field, most applications do not need to use the
blockSize field and should set it to 0.

The sampled-sound data follows the blockSize field. For information on the format of
sampled-sound data, see “Sampled-Sound Data” on page 2-9.

Note
The Sound Data Chunk is required unless the numSampleFrames field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. ◆

Format of Entire Sound Files 2

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit
monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note
that the number of sample frames in this example is odd, forcing a pad byte to be
inserted after the sound data. This pad byte is not reflected in the ckSize field of the
Sound Data Chunk, which means that special processing is required to correctly
determine the actual chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF
or AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is
'AIFF', and the file type of an AIFF-C format file is 'AIFC'. Macintosh applications
should not store any information in the resource fork of an AIFF or AIFF-C file because
that information might not be preserved by other applications that edit sound files.
Sound Storage Formats 2-87

C H A P T E R 2

Sound Manager
Figure 2-7 A sample AIFF-C file

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain
a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,
there must be a Sound Data Chunk in the Form Chunk. All other chunk types are
optional. Your application should be able to read all the required chunks if it uses AIFF
or AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

■ Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify
it, and then process it without making any assumptions about what kind of chunk it is
based on its order.

■ If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
AIFF-C file without any modification, you should copy the unrecognized chunks, too.

27263184

38

1

99611

99619

0

0

0

Form

Chunk

99690

8

22254.54

Format

Version

Chunk

Common

Chunk

Sound

Data

Chunk

AIFF-C

file

FORM

AIFF-C

FVER

4

COMM

NONE

“not compressed”

SSND

ckID

ckSize

ckID

ckSize

timestamp

formType

ckID

ckSize

numChannels

numSampleFrames

sampleSize

sampleRate

compressionType

compressionName

ckID

ckSize

offset

blockSize

sound dataSound

data

Frame 1 to frame n (to 99,611)

Bytes

4

4

4

4

4

4

4

4

2

4

2

8

4

16

4

4

4

4

Variable

1

Example

pad byte
2-88 Sound Storage Formats

C H A P T E R 2

Sound Manager

2
S

ound M
anager
■ You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the numSampleFrames parameter in the Common Chunk,
not from the ckSize parameter in the Sound Data Chunk. The ckSize parameter is
padded to include the fields that follow it, but it does not include the byte with a
value of 0 at the end if the total number of sound data bytes is odd.

■ Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSize field.

■ Remember that the ckSize field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference 2

This section describes the constants, data structures, and routines provided by the Sound
Manager. It also describes the format of data stored in sound resources and files that the
Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you
can use to specify channel initialization parameters and sound commands. It also lists
the sound attributes selector for the Gestalt function and the returned bit numbers. See
the section “Summary of the Sound Manager” on page 2-157 for a list of all the constants
defined by the Sound Manager.

The section “Data Structures” beginning on page 2-99 describes the Pascal data
structures for all of the Sound Manager records that applications can use, including
sound commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 2-119 describes the routines
that allow you to play sounds, manage sound channels, and obtain sound-related
information. That section also includes information on routines that give you low-level
control over sound output.

The section “Application-Defined Routines” beginning on page 2-151 describes callback
procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 2-154 describes the organization of format 1
and format 2 'snd ' resources.

Constants 2
This section describes the constants that you can use to specify channel initialization
parameters, sound commands, and chunk IDs. It also lists the Gestalt function sound
attributes selector and the returned bit numbers. All other constants defined by the
Sound Manager are described at the appropriate location in this chapter. (For example,
the constants that you can use to specify sound data types are described in connection
with the SndNewChannel function beginning on page 2-127.)
Sound Manager Reference 2-89

C H A P T E R 2

Sound Manager
Gestalt Selector and Response Bits 2

You can pass the gestaltSoundAttr selector to the Gestalt function to determine
information about the sound capabilities of a Macintosh computer.

CONST

gestaltSoundAttr = 'snd '; {sound attributes selector}

The Gestalt function returns information by setting or clearing bits in the response
parameter. The bits currently used are defined by constants. Note that most of these bits
provide information about the built-in hardware only.

IMPORTANT

Bits 7 through 12 are not defined for versions of the Sound Manager
prior to version 3.0. ▲

CONST

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

Constant descriptions

gestaltStereoCapability
Set if the built-in sound hardware is able to produce stereo sounds.

gestaltStereoMixing
Set if the built-in sound hardware mixes both left and right channels
of stereo sound into a single audio signal for the internal speaker.

gestaltSoundIOMgrPresent
Set if the Sound Input Manager is available.

gestaltBuiltInSoundInput
Set if a built-in sound input device is available.

gestaltHasSoundInputDevice
Set if a sound input device is available. This device can be either
built-in or external.

gestaltPlayAndRecord
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if
2-90 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
the gestaltBuiltInSoundInput bit is set, and it applies only to
any built-in sound input and output hardware.

gestalt16BitSoundIO
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.

gestaltStereoInput
Set if the built-in sound hardware can record stereo sounds.

gestaltLineLevelInput
Set if the built-in sound input port requires line level input.

gestaltSndPlayDoubleBuffer
Set if the Sound Manager supports the play-from-disk routines.

gestaltMultiChannels
Set if the Sound Manager supports multiple channels of sound.

gestalt16BitAudioSupport
Set if the Sound Manager can handle 16-bit audio data. This
indicates that software necessary to handle 16-bit data is available.

Note
For complete information about the Gestalt function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Utilities. ◆

Channel Initialization Parameters 2

You can use the following constants to specify initialization parameters for a sound
channel. You need to specify initialization parameters when you call SndNewChannel.

CONST

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}

Constant descriptions

initChanLeft Play sounds through the left channel of the Macintosh audio jack.
initChanRight Play sounds through the right channel of the Macintosh audio jack.
Sound Manager Reference 2-91

C H A P T E R 2

Sound Manager
waveInitChannel0
Play sounds through the first wave-table channel.

waveInitChannel1
Play sounds through the second wave-table channel.

waveInitChannel2
Play sounds through the third wave-table channel.

waveInitChannel3
Play sounds through the fourth wave-table channel.

initMono Play the same sound through both channels of the Macintosh audio
jack and the internal speaker. This is the default channel mode.

initStereo Play stereo sounds through both channels of the Macintosh audio
jack and the internal speaker. Note that some machines cannot play
stereo sounds.

initMACE3 Assume that the sounds to be played through the channel are
MACE 3:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

initMACE6 Assume that the sounds to be played through the channel are
MACE 6:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

initNoInterp Do not use linear interpolation to smooth a sound played back at a
different sample rate from the sound’s recorded sample rate. Using
the initNoInterp initialization parameter decreases the CPU load
for this channel. Sounds most affected by the absence of linear
interpolation are sinusoidal sounds. Sounds least affected are noisy
sound effects like explosions and screams.

initNoDrop Do not use drop-sample conversion to fake sample rate conversion.
Using the initNoDrop initialization parameter increases the CPU
load for the channel but results in a smoother sound.

The Sound Manager also recognizes the following masks, which you can use to select
various channel attributes:

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

Sound Command Numbers 2

You can perform many sound-related operations by sending sound commands to a
sound channel. For example, to change the volume of a sound that is currently playing,
you can send the ampCmd sound command to the channel using the SndDoImmediate
2-92 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
routine. Similarly, to change the volume of all sounds subsequently to be played in a
sound channel, you can send the volumeCmd sound command to that channel using the
SndDoCommand routine.

The cmd field of the SndCommand data structure (described on page 2-99) specifies the
sound command you want to execute. The param1 and param2 fields of that structure
contain any additional information that might be needed to complete the command. One
or both of these parameter fields might be ignored by a particular sound command. In
some cases, the Sound Manager returns information to your application in one of the
parameter fields.

IMPORTANT

In general, you’ll use either SndDoCommand or SndDoImmediate to
send sound commands to a sound channel. With several commands,
however, you must use the SndControl function to issue the sound
command. In Sound Manager version 3.0 and later, however, you
virtually never need to use SndControl because the commands that
require it are either no longer supported (for example, availableCmd,
totalLoadCmd, and loadCmd) or are obsolete (for example,
versionCmd). The sound commands specific to the SndControl
function are documented here for completeness only. ▲

The sound commands available to your application are defined by constants.

CONST

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options are }

{ supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}

getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}
Sound Manager Reference 2-93

C H A P T E R 2

Sound Manager
waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

Constant descriptions

nullCmd Do nothing.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

quietCmd Stop the sound that is currently playing. You should send
quietCmd by using SndDoImmediate.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

flushCmd Remove all commands currently queued in the specified sound
channel. A flushCmd command does not affect any sound that is
currently in progress. You should send flushCmd by using
SndDoImmediate.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

reInitCmd Reset the initialization parameters specified in param2 for the
specified channel.
param1: 0 (ignored on input and output)
param2: initialization parameters

waitCmd Suspend further command processing in a channel until the
specified duration has elapsed. To achieve sounds longer than
32,767 half-milliseconds, Pascal programmers can pass a negative
number in param1, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of param1.
param1: duration in half-milliseconds (0 to 65,565)
param2: 0 (ignored on input and output)

pauseCmd Pause any further command processing in a channel until
resumeCmd is received.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

resumeCmd Resume command processing in a channel that was previously
paused by pauseCmd.
param1: 0 (ignored on input and output)
param2: 0 (ignored on input and output)

callBackCmd Execute the callback procedure specified as a parameter to the
SndNewChannel function. Both param1 and param2 are
application-specific; you can use these two parameters to send data
to your callback routine.
param1: application-defined
param2: application-defined

syncCmd Synchronize multiple channels of sound. A syncCmd command is
held in the specified channel, suspending all further command
2-94 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
processing. The param2 parameter contains an identifier that is
arbitrary. Each time the Sound Manager receives syncCmd, it
decrements the count parameter for each channel having that
identifier. When the count for a specific channel reaches 0,
command processing in that channel resumes.
param1: count
param2: identifier

availableCmd Return 1 in param1 if the Sound Manager supports the
initialization options specified in param2 and 0 otherwise.
However, the Sound Manager might support certain initialization
parameters in general but not on a specific machine. You should
send availableCmd using the SndControl function.
param1: 0 on input; result of command on output
param2: initialization parameters

versionCmd Previously, this command determined which version of a sound
data format is available. The result is returned in param2. The high
word of the result indicates the major revision number, and the low
word indicates the minor revision number. For example, version 2.0
of a data format would be returned as $00020000. However, this
command is obsolete, and your application should not rely on it.
You send versionCmd by using the SndControl function.
param1: 0 (ignored on input and output)
param2: 0 on input; version on output

totalLoadCmd Previously, this command determined the total CPU load factor for
all existing sound activity and for a new sound channel having the
initialization parameters specified in param2. However, this
command is obsolete, and your application should not rely on it.
You send totalLoadCmd by using the SndControl function.
param1: 0 on input, load factor on output
param2: initialization parameters

loadCmd Previously, this command determined the CPU load factor that
would be incurred by a new channel of sound having the
initialization parameters specified in param2. The load factor
returned in param1 is the percentage of CPU processing power that
the specified sound channel would require. However, this
command is obsolete, and your application should not rely on it.
You send loadCmd by using the SndControl function.
param1: 0 on input, load factor on output
param2: initialization parameters

freqDurationCmd
Play the note specified in param2 for the duration specified in
param1. To achieve sounds longer than 32,767 half-milliseconds,
Pascal programmers can pass a negative number in param1, in
which case the sound plays for 32,767 half-milliseconds plus the
absolute value of param1. The param2 parameter must contain a
value in the range 0 to 127. If you want the note to stop playing
after the duration specified in param1, you must send quietCmd
after freqDurationCmd.
Sound Manager Reference 2-95

C H A P T E R 2

Sound Manager
param1: duration in half-milliseconds (0 to 65,565)
param2: desired frequency

restCmd Rest a channel for a specified duration. The duration is specified in
half-milliseconds in param1. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a negative number
in param1, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of param1.
param1: duration in half-milliseconds (0 to 65,565)
param2: 0 (ignored on input and output)

freqCmd Change the frequency (or pitch) of a sound. If no sound is currently
playing, then freqCmd causes the Sound Manager to begin playing
indefinitely at the frequency specified in param2. If, however, no
instrument is installed in the channel and you attempt to play either
wave-table or sampled-sound data, no sound is produced. The
param2 parameter must contain a value in the range 0 to 127. The
freqCmd command is identical to the freqDurationCmd
command, except that no duration is specified to a freqCmd
command.
param1: 0 (ignored on input and output)
param2: desired frequency

ampCmd Change the amplitude (or loudness) of a sound. If no sound is
currently playing, then ampCmd sets the amplitude of the next
sound to be played. You specify the amplitude in param1; the
amplitude should be an integer in the range 0 to 255.
param1: desired amplitude
param2: 0 (ignored on input and output)

timbreCmd Change the timbre (or tone) of a sound currently being defined
using square-wave data. A timbre value of 0 produces a clear tone; a
timbre value of 254 produces a buzzing tone. You can use
timbreCmd only for sounds defined using square-wave data.
param1: desired timbre (0 to 254)
param2: 0 (ignored on input and output)

getAmpCmd Determine the current amplitude (or loudness) of a sound. The
amplitude is returned in an integer variable whose address you
pass in param2 and is in the range 0 to 255.
param1: 0 (ignored on input and output)
param2: pointer to amplitude variable

volumeCmd Set the right and left volumes of the specified sound channel to the
volumes specified in the high and low words of param2. The value
$0100 represents full volume, and $0080 represents half volume.
You can specify values larger than $0100 to overdrive the volume.
For example, setting param2 to $02000200 sets the volume on both
left and right speakers to twice full volume. Note, however, that
volumeCmd is available only in Sound Manager versions 3.0 and
later.
param1: 0 (ignored on input and output)
param2: high word is right volume, low word is left volume

getVolumeCmd Get the current right and left volumes of the specified sound
channel. The volumes are returned in the high and low words of the
2-96 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
long integer pointed to by param2. The value $0100 represents full
volume, and $0080 represents half volume. Note, however, that
getVolumeCmd is available only in Sound Manager versions 3.0
and later.
param1: 0 (ignored on input and output)
param2: pointer to volume data

waveTableCmd Install a wave table as a voice in the specified channel. The param1
parameter specifies the length of the wave table, and the param2
parameter is a pointer to the wave-table data itself. You can use
waveTableCmd only for sounds defined using wave-table data.
param1: length of wave table
param2: pointer to wave-table data

soundCmd Install a sampled sound as a voice in a channel. If the high bit of the
command is set, param2 is interpreted as an offset from the
beginning of the 'snd ' resource containing the command to the
sound header. If the high bit is not set, param2 is interpreted as a
pointer to the sound header. You can use the soundCmd command
only with noncompressed sampled-sound data. You can also use
soundCmd to preconfigure a sound channel, so that you can later
send sound commands to it at interrupt time.
param1: 0 (ignored on input and output)
param2: offset or pointer to sound header

bufferCmd Play a buffer of sampled-sound data. If the high bit of the command
is set, param2 is interpreted as an offset from the beginning of the
'snd ' resource containing the command to the sound header. If
the high bit is not set, param2 is interpreted as a pointer to the
sound header. You can use bufferCmd only with sampled-sound
data. Note that sending a bufferCmd resets the rate of the channel
to 1.0.
param1: 0 (ignored on input and output)
param2: offset or pointer to sound header

rateCmd Set the rate of a sampled sound that is currently playing, thus
effectively altering its pitch and duration. Your application can set a
rate of 0 to pause a sampled sound that is playing. The new rate is
set to the value specified in param2, which is interpreted relative to
22 kHz. (For example, to set the rate to 44 kHz, pass $00020000 in
param2; see Listing 2-4 on page 2-26 for sample code that uses
rateCmd.) You can use rateCmd only with sampled-sound data.
param1: 0 (ignored on input and output)
param2: desired rate of sound

getRateCmd Determine the sample rate of the sampled sound currently playing.
The current rate of the channel is returned in a Fixed variable
whose address you pass in param2 of the sound command. The
values returned are always relative to the 22 kHz sampling rate, as
with the rateCmd sound command. You can use getRateCmd only
with sampled-sound data, and you should send it by using
SndDoImmediate.
param1: 0 (ignored on input and output)
param2: pointer to rate variable
Sound Manager Reference 2-97

C H A P T E R 2

Sound Manager
Chunk IDs 2

You can use the following constants to specify a chunk ID, a 4-byte value that identifies
the type of a chunk in an AIFF or AIFF-C file.

CONST

{IDs for AIFF and AIFF-C file chunks}

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

MarkerID = 'MARK'; {ID for Marker Chunk}

InstrumentID = 'INST'; {ID for Instrument Chunk}

MIDIDataID = 'MIDI'; {ID for MIDI Data Chunk}

AudioRecordingID = 'AESD'; {ID for Recording Chunk}

 ApplicationSpecificID = 'APPL'; {ID for Application Chunk}

CommentID = 'COMT'; {ID for Comment Chunk}

NameID = 'NAME'; {ID for Name Chunk}

AuthorID = 'AUTH'; {ID for Author Chunk}

CopyrightID = '(c) '; {ID for Copyright Chunk}

AnnotationID = 'ANNO'; {ID for Annotation Chunk}

Constant descriptions

FormID The Form Chunk. A Form Chunk contains information about the
format of the file, and contains all the other chunks of the file.

FormatVersionID
The Format Version Chunk. A Format Version Chunk contains an
indication of the version of the AIFF-C specification according to
which this file is structured (AIFF-C only).

CommonID The Common Chunk. A Common Chunk contains information
about the sampled sound, such as the sampling rate and
sample size.

SoundDataID The Sound Data Chunk. A Sound Data Chunk contains the sample
frames that comprise the sampled sound.

MarkerID The Marker Chunk. A Marker Chunk contains markers that point to
positions in the sound data.

InstrumentID The Instrument Chunk. An Instrument Chunk defines basic
parameters that an instrument (such as a sampling keyboard) can
use to play back the sound data.

MIDIDataID The MIDI Data Chunk. A MIDI Chunk contains MIDI data.
AudioRecordingID

The Audio Recording Chunk. An Audio Recording Chunk contains
information pertaining to audio recording devices.

ApplicationSpecificID
The Application Chunk. An Application Chunk contains
application-specific information.
2-98 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
CommentID The Comment Chunk. A Comment Chunk contains a comment.
NameID The Name Chunk. A Name Chunk contains the name of the

sampled sound.
AuthorID The Author Chunk. An Author Chunk contains one or more names

of the authors (or creators) of the sampled sound.
CopyrightID The Copyright Chunk. A Copyright Chunk contains a copyright

notice for the sampled sound.
AnnotationID The Annotation Chunk. An Annotation Chunk contains a comment.

Data Structures 2
This section describes the data structures that the Sound Manager defines. The Sound
Manager uses many of these data structures (such as sound headers) to store information
about sounds or sound channels. You should use these data structures only if you need
to access this information or to customize sound play. The Sound Manager also defines
several data structures that allow you to control sound output or to receive information
about its status.

You use the sound command record to define a sound command that you send to the
Sound Manager using either the SndDoCommand or SndDoImmediate functions.

If you want to play only a portion of a sound, you can use an audio selection record in
conjunction with the SndStartFilePlay function.

You use the sound channel status record to obtain information from the Sound Manager
about a specific sound channel, and you use the Sound Manager status record to obtain
information about all sound channels.

The sound channel record stores information about a sound channel. Many of the fields
of this record are for internal Sound Manager use only, but there are a few that you can
access directly.

The sound header record stores information about sampled-sound data. You can use a
sound header record to obtain information on a sound or to change a sound’s loop
points. The extended sound header record and the compressed sound header record add
several fields to the sound header record that provide more information about a sound.

If your application uses the SndPlayDoubleBuffer function to customize the double
buffering of sound data, you need to set up a sound double buffer header record, which
must include pointers to two sound double buffer records.

Sound Command Records 2

A sound command record describes a sound command that you send to a sound
channel using the SndDoCommand or SndDoImmediate function. The SndCommand
data type defines a sound command record.
Sound Manager Reference 2-99

C H A P T E R 2

Sound Manager
TYPE SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Field descriptions

cmd The number of the sound command you wish to execute.
param1 The first parameter of the sound command.
param2 The second parameter of the sound command.

The meaning of the param1 and param2 fields depends on the particular sound
command being issued. See “Sound Command Numbers” beginning on page 2-92 for
a description of the sound commands your application can use.

Audio Selection Records 2

You can pass a pointer to an audio selection record to the SndStartFilePlay function
to play only part of a sound in a file on disk. The AudioSelection data type defines an
audio selection record.

TYPE AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

Field descriptions

unitType The type of unit of time used in the selStart and selEnd fields.
You can set this to seconds by specifying the constant
unitTypeSeconds.

selStart The starting point in seconds of the sound to play. If selStart is
greater than selEnd, SndStartFilePlay returns an error.

selEnd The ending point in seconds of the sound to play.

Use a constant to specify the unit type.

CONST

unitTypeSeconds = $0000; {seconds}

unitTypeNoSelection = $FFFF; {no selection}

If the value in the unitType field is unitTypeNoSelection, then the values in the
selStart and selEnd fields are ignored and the entire sound plays. Alternatively, if
you wish to play an entire sound, you can pass NIL instead of a pointer to an audio
selection record to the SndStartFilePlay function.
2-100 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Channel Status Records 2

To obtain information about a sound channel, you can pass a pointer to a sound channel
status record to the SndChannelStatus function. The SCStatus data type defines a
sound channel status record.

TYPE SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if channel is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

Field descriptions

scStartTime If the Sound Manager is playing from disk through the specified
sound channel, then scStartTime is the starting time in seconds
from the beginning of the sound for the play from disk. Otherwise,
scStartTime is 0.

scEndTime If the Sound Manager is playing from disk through the specified
sound channel, then scEndTime is the ending time in seconds from
the beginning of the sound for the play from disk. Otherwise,
scEndTime is 0.

scCurrentTime If the Sound Manager is playing from disk through the specified
sound channel, then scCurrentTime is the current time in
seconds from the beginning of the disk play. Otherwise,
scCurrentTime is 0. The Sound Manager updates the value of this
field only periodically, and you should not rely on the accuracy of
its value.

scChannelBusy If the specified channel is currently processing sound commands,
then scChannelBusy is TRUE; otherwise, scChannelBusy is
FALSE.

scChannelDisposed
Reserved for use by Apple Computer, Inc.

scChannelPaused
If the Sound Manager is playing from disk through the specified
sound channel and the play from disk is paused, then
scChannelPaused is TRUE; otherwise, scChannelPaused is
FALSE. This field is also TRUE if the channel was paused with the
pauseCmd sound command.

scUnused Reserved for use by Apple Computer, Inc.
Sound Manager Reference 2-101

C H A P T E R 2

Sound Manager
scChannelAttributes
The current attributes of the specified channel. These attributes are
in the channel initialization parameters format. The value returned
in this field is always identical to the value passed in the init
parameter to SndNewChannel.

scCPULoad The CPU load for the specified channel. You should not rely on the
value in this field.

You can mask out certain values in the scChannelAttributes field to determine how
a channel has been initialized.

CONST

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

Sound Manager Status Records 2

You can use the SndManagerStatus function to get a Sound Manager status record,
which gives information on the current CPU loading caused by all open channels of
sound. The SMStatus data type defines a Sound Manager status record.

TYPE SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;

Field descriptions

smMaxCPULoad The maximum CPU load that the Sound Manager will not exceed
when allocating channels. The smMaxCPULoad field is set to a
default value of 100 when the system starts up.

smNumChannels The number of sound channels that are currently allocated by all
applications. This does not mean that the channels allocated are
being used, only that they have been allocated and that CPU
loading is being reserved for these channels.

smCurCPULoad The CPU load that is being taken up by currently allocated channels.

IMPORTANT

Although you can use the information contained in the Sound Manager
status record to determine how many channels are allocated, you should
not rely on the information in the smMaxCPULoad or smCurCPULoad
field. To determine whether the Sound Manager can create a new
channel, simply call the SndNewChannel function, which returns
an appropriate result code if it is unable to allocate a new channel. ▲
2-102 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Channel Records 2

The Sound Manager maintains a sound channel record to store information about each
sound channel that you allocate directly by calling the SndNewChannel function or
indirectly by passing a NIL channel to a high-level Sound Manager routine like the
SndPlay function. The SndChannel data type defines a sound channel record.

TYPE SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

Field descriptions

nextChan A pointer to the next sound channel in a single queue of channels
that the Sound Manager maintains for all applications.

firstMod Used internally.
callBack A pointer to the callback procedure associated with the sound

channel. See page 2-152 for information on this callback procedure.
userInfo A value that your application can use to store information.
wait Used internally.
cmdInProgress Used internally.
flags Used internally.
qLength Used internally.
qHead Used internally.
qTail Used internally.
queue The sound commands pending for the sound channel.

The only field of the sound channel record that you are likely to need to access directly is
the userInfo field. This field is useful if you need to pass a value to a Sound Manager
callback procedure or completion routine. For example, you might pass the value stored
in the A5 register so that your callback procedure can access your application’s global
variables. Or, you might store a handle to sound data here so that a routine that disposes
of an allocated channel can also release the sound data that the channel played.

In rarer instances, you might need to access the callBack field of the sound channel
record directly. Ordinarily, you set this field by specifying a callback procedure when
Sound Manager Reference 2-103

C H A P T E R 2

Sound Manager
you call the SndNewChannel function. However, you can change the callback procedure
associated with a channel by changing this field directly. The Sound Manager will then
execute the procedure you specify in this field whenever the channel processes a
callBackCmd command.

▲ W A R N I N G

You should not attempt to manipulate all open sound channels by using
the nextChan field to walk the sound channel queue. The queue might
contain channels opened by other applications. If you need to perform
some operation on all sound channels that your application has
allocated, you should maintain your own data structure that keeps track
of your application’s channels. ▲

Sound Header Records 2

Sound resources often contain sampled-sound data as well as sound commands. The
sound data is contained in the last field of the sound header. You can access a sound
header record to find information about sampled-sound data. The standard sound
header is used only for simple monophonic sounds. The SoundHeader data type
defines a sampled sound header record.

TYPE SoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

length: LongInt; {number of samples in array}

sampleRate: Fixed; {sample rate}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

samplePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the baseFrequency field,
then this field should be set to NIL. Otherwise, this field is a pointer
to the memory location of the sampled-sound data. (This might be
useful if you want to change some fields of a sound header but do
not want to modify a handle to a sound resource directly.)

length The number of bytes of sound data.
sampleRate The rate at which the sample was originally recorded. The Sound

Manager can play sounds sampled at any rate up to 64 kHz. The
values corresponding to the three most common sample rates
(11 kHz, 22 kHz, and 44 kHz) are defined by constants:
2-104 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
CONST

rate44khz = $AC440000; {44100.00000 Fixed}

rate22khz = $56EE8BA3; {22254.54545 Fixed}

rate11khz = $2B7745D1; {11127.27273 Fixed}

Note that the sample rate is declared as a Fixed data type, but the
most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

loopStart The starting point of the portion of the sampled sound header that
is to be used by the Sound Manager when determining the duration
of freqDurationCmd. These loop points specify the byte numbers
in the sampled data to be used as the beginning and end points to
cycle through when playing the sound. The loop starting and
ending points are 0-based.

loopEnd The end point of the portion of the sampled sound header that is to
be used by the Sound Manager when determining the duration of
freqDurationCmd. If no looping is desired, set both loopStart
and loopEnd to 0.

encode The method of encoding used to generate the sampled-sound data.
The current encoding option values are

CONST

stdSH = $00; {standard sound header}

extSH = $FF; {extended sound header}

cmpSH = $FE; {compressed sound header}

For a standard sound header, you should specify the constant
stdSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

baseFrequency The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFrequency values. The baseFrequency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the freqDurationCmd
command. Applications should not alter the baseFrequency field
of a sampled sound; to play the sample at different pitches, use
freqDurationCmd or freqCmd.

sampleArea If the value of samplePtr is NIL, this field is an array of bytes,
each of which contains a value similar to the values in a wave-table
description. These values are interpreted as offset values, where $80
represents an amplitude of 0. The value $00 is the most negative
amplitude, and $FF is the largest positive amplitude. The samples
are numbered 1 through the value in the length parameter.

If you need to create a sound header for sampled-sound data that your application has
recorded, then you should use the SetupSndHeader function, described in the chapter
“Sound Input Manager” in this book.
Sound Manager Reference 2-105

C H A P T E R 2

Sound Manager
Extended Sound Header Records 2

For sampled-sound data that is more complex than a standard sound header can
describe, the Sound Manager uses an extended sound header record. Sound data
described by such a header can be monophonic or stereo, but it cannot be compressed.

Most of the fields of the extended sound header correspond to fields of the sampled
sound header. However, the extended sound header allows the encoding of stereo
sound. The numChannels field contains the number of channels of sound recorded, and
the numFrames field contains the number of frames of sound recorded in each channel.
For more information on the format of sampled sound frames, see “Sound Files” on
page 2-81.

Note
The word “channel” can be confusing in this context, because a sound
resource containing polyphonic sound (that is, multichannel sound) can
be played on a single Sound Manager sound channel. Channel is a
general term for the portion of sound data that can be described by a
single sound wave. Monophonic sound is composed of a single channel.
Stereo sound (also called polyphonic sound) is composed of several
channels of sound played simultaneously. “Sound channel” is a term
specific to the Sound Manager. ◆

TYPE ExtSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {total number of frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

instrumentChunks: Ptr; {pointer to instrument info}

AESRecording: Ptr; {pointer to audio info}

sampleSize: Integer; {number of bits per sample}

futureUse1: Integer; {reserved}

futureUse2: LongInt; {reserved}

futureUse3: LongInt; {reserved}

futureUse4: LongInt; {reserved}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;
2-106 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Field descriptions

samplePtr A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the futureUse4 field, then
this field should be set to NIL. Otherwise, this field is a pointer to
the memory location of the sampled-sound data.

numChannels The number of channels in the sampled-sound data.
sampleRate The rate at which the sample was originally recorded. The

approximate sample rates are shown in Table 2-1 on page 2-16. Note
that the sample rate is declared as a Fixed data type, but the most
significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

loopStart The starting point of the portion of the extended sampled sound
header that is to be used by the Sound Manager when determining
the duration of freqDurationCmd. These loop points specify the
byte numbers in the sampled data to be used as the beginning and
end points to cycle through when playing the sound. The loop
starting and ending points are 0-based.

loopEnd The end point of the portion of the extended sampled sound header
that is to be used by the Sound Manager when determining the
duration of freqDurationCmd.

encode The method of encoding used to generate the sampled-sound data.
For an extended sound header, you should specify the constant
extSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

baseFrequency The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFrequency values. The baseFrequency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the freqDurationCmd
command. Applications should not alter the baseFrequency field
of a sampled sound; to play the sample at different pitches, use
freqDurationCmd or freqCmd.

numFrames The number of frames in the sampled-sound data. Each frame
contains numChannels bytes for 8-bit sound data.

AIFFSampleRate The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

markerChunk Synchronization information. The markerChunk field is not
presently used and should be set to NIL.

instrumentChunks
Instrument information.

AESRecording Information related to audio recording devices.
sampleSize The number of bits in each sample frame.
futureUse1 Reserved.
futureUse2 Reserved.
futureUse3 Reserved.
Sound Manager Reference 2-107

C H A P T E R 2

Sound Manager
futureUse4 The four futureUse fields are reserved for use by Apple. To
maintain compatibility with future releases of system software, you
should always set these fields to 0.

sampleArea An array of interleaved sample points, each of which contains a
value similar to the values in a wave-table description. For 8-bit
sampled-sound data, these values are interpreted as offset values,
where $80 represents an amplitude of 0. The value $00 is the largest
negative amplitude, and $FF is the largest positive amplitude.

To compute the total number of bytes of a sample, multiply the values in the
numChannels, numFrames, and sampleSize fields and divide by the number of bytes
per sample (typically 8 or 16).

Note
Although extended sound headers (and compressed sound headers,
described next) support the storage of 16-bit sound, only versions 3.0
and later of the Sound Manager can play 16-bit sounds. If your
application uses 16-bit sound, you must convert it to 8-bit sound before
earlier versions of the Sound Manager can play it. ◆

Compressed Sound Header Records 2

To describe compressed sampled-sound data, the Sound Manager uses a compressed
sound header record. Compressed sound headers include all of the essential fields of
extended sound headers in addition to several fields that pertain to compression. The
CmpSoundHeader data type defines the compressed sound header record.

TYPE CmpSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {length of sample in frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

format: OSType; {data format type}

futureUse2: LongInt; {reserved}

stateVars: StateBlockPtr; {pointer to StateBlock}

leftOverSamples: LeftOverBlockPtr;

{pointer to LeftOverBlock}

compressionID: Integer; {ID of compression algorithm}

packetSize: Integer; {number of bits per packet}

snthID: Integer; {unused}
2-108 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
sampleSize: Integer; {bits in each sample point}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

samplePtr The location of the compressed sound frames. If samplePtr is NIL,
then the frames are located in the sampleArea field of the
compressed sound header. Otherwise, samplePtr points to a
buffer that contains the frames.

numChannels The number of channels in the sample.
sampleRate The sample rate at which the frames were sampled before

compression. The approximate sample rates are shown in Table 2-1
on page 2-16. Note that the sample rate is declared as a Fixed data
type, but the most significant bit is not treated as a sign bit; instead,
that bit is interpreted as having the value 32,768.

loopStart The beginning of the loop points of the sound before compression.
The loop starting and ending points are 0-based.

loopEnd The end of the loop points of the sound before compression.
encode The method of encoding (if any) used to generate the

sampled-sound data. For a compressed sound header, you should
specify the constant cmpSH. Encode option values in the ranges
0 through 63 and 128 to 255 are reserved for use by Apple. You are
free to use numbers in the range 64 through 127 for your own
encode options.

baseFrequency The pitch of the original sampled sound. It is not used by
bufferCmd. If you wish to make use of baseFrequency with a
compressed sound, you must first expand it and then play it with
soundCmd and freqDurationCmd.

numFrames The number of frames contained in the compressed sound header.
When you store multiple channels of noncompressed sound, store
them as interleaved sample frames (as in AIFF). When you store
multiple channels of compressed sounds, store them as interleaved
packet frames.

AIFFSampleRate
The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

markerChunk Synchronization information. The markerChunk field is not
presently used and should be set to NIL.

format The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, used to generate the
audio data. For example, for data generated using MACE 3:1
compression, this field should contain the value 'MAC3'. See
page 2-86 for a list of the format types defined by Apple. This field
is used only if the compressionID field contains the value
fixedCompression.
Sound Manager Reference 2-109

C H A P T E R 2

Sound Manager
futureUse2 This field is reserved for use by Apple. To maintain compatibility
with future releases of system software, you should always set this
field to 0.

stateVars A pointer to a state block. This field is used to store the state
variables for a given algorithm across consecutive calls. See “State
Blocks” on page 2-119 for a description of the state block.

leftOverSamples
A pointer to a leftover block. You can use this block to store samples
that will be truncated across algorithm invocations. See “Leftover
Blocks” on page 2-119 for a description of the leftover block.

compressionID The compression algorithm used on the samples in the compressed
sound header. You can use a constant to define the compression
algorithm.

CONST

variableCompression

= -2; {variable-ratio compr.}

fixedCompression = -1; {fixed-ratio compr.}

notCompressed = 0; {noncompressed samples}

threeToOne = 3; {3:1 compressed samples}

sixToOne = 4; {6:1 compressed samples}

The constant fixedCompression is available only with Sound
Manager versions 3.0 and later. If the compressionID field
contains the value fixedCompression, the Sound Manager reads
the format field to determine the compression algorithm used to
generate the compressed data. Otherwise, the Sound Manager reads
the compressionID field. Apple reserves the right to use
compression IDs in the range 0 through 511. Currently the constant
variableCompression is not used by the Sound Manager.

packetSize The size, in bits, of the smallest element that a given expansion
algorithm can work with. You can use a constant to define the
packet size.

CONST

sixToOnePacketSize = 8; {size for 6:1}

threeToOnePacketSize = 16; {size for 3:1}

Beginning with Sound Manager version 3.0, you can specify the
value 0 in this field to instruct the Sound Manager to determine the
packet size itself.

snthID This field is unused. You should set it to 0.
sampleSize The size of the sample before it was compressed. The samples

passed in the compressed sound header should always be
byte-aligned, and any padding done to achieve byte alignment
should be done from the left with zeros.
2-110 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
sampleArea The sample frames, but only when the samplePtr field is NIL.
Otherwise, the sample frames are in the location indicated
by samplePtr.

Sound Double Buffer Header Records 2

You must fill in a sound double buffer header record and two sound double
buffer records if you wish to manage your own double buffers. The
SndDoubleBufferHeader data type defines a sound double buffer header.

TYPE SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

Sound Manager versions 3.0 and later support custom compression and decompression
algorithms by defining the revised sound double buffer header record, of type
SndDoubleBufferHeader2. It’s identical to the SndDoubleBufferHeader data type
except that it contains the dbhFormat field at the end.

TYPE SndDoubleBufferHeader2 =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

dbhFormat: OSType; {signature of codec}

END;

Field descriptions

dbhNumChannels
The number of channels for the sound (1 for monophonic sound,
2 for stereo).

dbhSampleSize The sample size for the sound if the sound is not compressed. If the
sound is compressed, dbhSampleSize should be set to 0. Samples
Sound Manager Reference 2-111

C H A P T E R 2

Sound Manager
that are 1–8 bits have a dbhSampleSize value of 8; samples that
are 9–16 bits have a dbhSampleSize value of 16. Currently, only
8-bit samples are supported. For further information on sample
sizes, refer to the AIFF specification.

dbhCompressionID
The compression identification number of the compression
algorithm, if the sound is compressed. If the sound is not
compressed, dbhCompressionID should be set to 0.

dbhPacketSize The packet size in bits for the compression algorithm specified by
dbhCompressionID, if the sound is compressed.

dbhSampleRate The sample rate for the sound. Note that the sample rate is declared
as a Fixed data type, but the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.

dbhBufferPtr An array of two pointers, each of which should point to a valid
SndDoubleBuffer record.

dbhDoubleBack A pointer to the application-defined routine that is called when the
double buffers are switched and the exhausted buffer needs to
be refilled.

dbhFormat The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, to be used to
decompress the audio data. For example, for data generated using
MACE 3:1 compression, this field should contain the value 'MAC3'.
See page 2-86 for a list of the format types defined by Apple. This
field is used only if the dbhCompressionID field contains the
value fixedCompression.

The dbhBufferPtr array contains pointers to two sound double buffer records, whose
format is defined below. These are the two buffers between which the Sound Manager
switches until all the sound data has been sent into the sound channel. When you make
the call to SndPlayDoubleBuffer, the two buffers should both already contain a
nonzero number of frames of data.

Sound Double Buffer Records 2

You must fill in a sound double buffer header record if you wish to manage your own
double buffers. The dbhBufferPtr field of the sound double buffer header record
references two sound double buffer records, which you must also fill out. The
SndDoubleBufferHeader data type defines a sound double buffer header.

TYPE SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt; {for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte; {array of data}

END;
2-112 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Field descriptions

dbNumFrames The number of frames in the dbSoundData array.
dbFlags Buffer status flags.
dbUserInfo Two long words into which you can place information that you

need to access in your doubleback procedure.
dbSoundData A variable-length array. You write samples into this array, and the

Sound Manager reads samples out of this array.

The buffer status flags field for each of the two buffers can contain either of these values
that your doubleback procedure must set when appropriate:

CONST

dbBufferReady = $00000001;

dbLastBuffer = $00000004;

All other bits in the dbFlags field are reserved by Apple; your application should not
modify them.

Chunk Headers 2

Every chunk in an AIFF or AIFF-C file contains a chunk header that defines
characteristics of the chunk. The ChunkHeader data type defines a chunk header.

TYPE ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;

Field descriptions

ckID The ID of the chunk. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII
value $20) through '~' (ASCII value $7E). Spaces cannot precede
printing characters, but trailing spaces are allowed. Control
characters are not allowed. See “Chunk IDs” on page 2-98 for a list
of the currently recognized chunk IDs.

ckSize The size of the chunk in bytes, not including the ckID and ckSize
fields.

Form Chunks 2

All sound files begin with a Form Chunk. This chunk defines the type and size of the file
and can be thought of as enclosing the remaining chunks in the sound file. The
ContainerChunk data type defines a Form Chunk.
Sound Manager Reference 2-113

C H A P T E R 2

Sound Manager
TYPE ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

Field descriptions

ckID The ID of this chunk. For a Form Chunk, this ID is 'FORM'.
ckSize The size of the data portion of this chunk. Note that the data portion

of a Form Chunk is divided into two parts, formType and the
remaining chunks of the sound file.

formType The type of audio file. For AIFF files, formType is 'AIFF'. For
AIFF-C files, formType is 'AIFC'.

The size of an entire sound file is ckSize+8, because the ckSize field incorporates the
size of all chunks of the sound file, except the sizes of the ckID and ckSize fields of the
Form Chunk itself.

Format Version Chunks 2

AIFF-C files each contain exactly one Format Version Chunk, but files of type AIFF do
not contain any. You can examine the Format Version Chunk to ensure that your
application can process an AIFF-C file. The FormatVersionChunk data type defines
a Format Version Chunk.

TYPE FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4}

timestamp: LongInt; {date of format version}

END;

Field descriptions

ckID The ID of this chunk. For a Format Version Chunk, this ID is
'FVER'.

ckSize The size of the data portion of this chunk. This value is always 4 in
a Format Version Chunk because the timestamp field is 4 bytes
long (the 8 bytes used by the ckID and ckSize fields are not
included).

timestamp An indication of when the format version for this kind of file was
created. The value indicates the number of seconds between
midnight, January 1, 1904, and the time at which the AIFF-C file
format was created.
2-114 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Common Chunks 2

Every AIFF and AIFF-C file contains a Common Chunk that defines some fundamental
characteristics of the sampled sound contained in the file. The format of the Common
Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type
of file format (by inspecting the formType field of the Form Chunk) before reading the
Common Chunk.

For AIFF files, the CommonChunk data type defines a Common Chunk.

TYPE CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

Field descriptions

ckID The ID of this chunk. For a Common Chunk, this ID is 'COMM'.
ckSize The size of the data portion of this chunk. In AIFF files, this field is

always 18 because the 8 bytes used by the ckID and ckSize fields
are not included.

numChannels The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

numSampleFrames
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is numChannels * numSampleFrames.

sampleSize The number of bits in each sample point of noncompressed sound
data. The sampleSize field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sampleRate The sample rate at which the sound is to be played back, in sample
frames per second.

Extended Common Chunks 2

An AIFF-C file contains an extended Common Chunk that includes all of the fields of
the Common Chunk, but adds two fields that describe the type of compression (if any)
used on the audio data. The ExtCommonChunk data type defines an extended
Common Chunk.
Sound Manager Reference 2-115

C H A P T E R 2

Sound Manager
TYPE ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {size of chunk data}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;

Field descriptions

ckID The ID of this chunk. For an extended Common Chunk, this ID
is 'COMM'.

ckSize The size of the data portion of this chunk. For an extended
Common Chunk, this size is 22 plus the number of bytes in the
compressionName string.

numChannels The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

numSampleFrames
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is numChannels * numSampleFrames.

sampleSize The number of bits in each sample point of noncompressed sound
data. The sampleSize field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sampleRate The sample rate at which the sound is to be played back, in sample
frames per second.

compressionType
The ID of the compression algorithm, if any, used on the sound
data. Compression algorithms supplied by Apple have the
following types:

CONST

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6';
2-116 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
You can define your own compression types, but you should
register them with Apple.

compressionName
A human-readable name for the compression algorithm ID
specified in the compressionType field. If the number of bytes in
this field is odd, then it is padded with the digit 0. Compression
algorithms supplied by Apple have the following names:

CONST

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';

You can define your own compression types, but you should
register them with Apple.

Sound Data Chunks 2

AIFF and AIFF-C files generally contain a Sound Data Chunk that contains the actual
sampled-sound data. The SoundDataChunk data type defines a Sound Data Chunk.

TYPE SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

Field descriptions

ckID The ID of this chunk. For a Sound Data Chunk, this ID is 'SSND'.
ckSize The size of the data portion of this chunk. This size does not include

the 8 bytes occupied by the values in the ckID and the ckSize
fields.

offset An offset (in bytes) to the beginning of the first sample frame in the
chunk data. Most applications do not need to use the offset field
and should set it to 0.

blockSize The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the offset field for aligning
sound data to blocks. As with the offset field, most applications
do not need to use the blockSize field and should set it to 0.

The sampled-sound data follows the blockSize field. If the data following the
blockSize field contains an odd number of bytes, a pad byte with a value of 0 is added
at the end to preserve an even length for this chunk. If there is a pad byte, it is not
Sound Manager Reference 2-117

C H A P T E R 2

Sound Manager
included in the ckSize field. For information on the format of the sampled-sound data,
see “Sound Files” on page 2-81.

Version Records 2

The functions SndSoundManagerVersion and MACEVersion return version
information using a version record. The NumVersion data type defines a version record.

TYPE NumVersion =

PACKED RECORD

CASE INTEGER OF

 0:

(majorRev: SignedByte; {major revision level in BCD}

minorAndBugRev: SignedByte; {minor revision level}

stage: SignedByte; {development stage}

nonRelRev: SignedByte); {nonreleased revision level}

 1:

(version: LongInt); {all 4 fields together}

END;

IMPORTANT

A version record has the same structure as the first four fields of a
version resource (a resource of type 'vers'). See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about version resources. ▲

Field descriptions

majorRev The major revision level. This field is a signed byte in binary-coded
decimal format.

minorAndBugRev
The minor revision level. This field is a signed byte in binary-coded
decimal format.

stage The development stage. You should use the following constants to
specify a development stage:

CONST

developStage = $20; {prealpha release}

alphaStage = $40; {alpha release}

betaStage = $60; {beta release}

finalStage = $80; {final release}

nonRelRev The revision level of a prereleased version.
version A long integer that contains all four version fields.
2-118 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Leftover Blocks 2

The leftOverSamples field of a compressed sound header contains a pointer to a
leftover block, defined by the LeftOverBlock data type.

TYPE LeftOverBlock =

RECORD

count: LongInt;

sampleArea: PACKED ARRAY[0..leftOverBlockSize - 1] OF Byte;

END;

Field descriptions

count The number of bytes in the sampleArea field.
sampleArea An array of bytes. This field contains samples that are truncated

across invocations of the compression algorithm. The size of this
field is defined by a constant.

CONST

leftOverBlockSize = 32;

State Blocks 2

The stateVars field of a compressed sound header contains a pointer to a state block,
defined by the StateBlock data type.

TYPE StateBlock =

RECORD

stateVar: ARRAY[0..stateBlockSize - 1] OF Integer;

END;

Field descriptions

stateVar An array of integers. This field contains state variables that need to
be preserved across invocations of the compression algorithm. The
size of this field is defined by a constant.

CONST

stateBlockSize = 64;

Sound Manager Routines 2
This section describes the routines provided by the Sound Manager. You can use these
routines to

■ play sound resources

■ play sounds stored in files directly from disk

■ allocate and release sound channels
Sound Manager Reference 2-119

C H A P T E R 2

Sound Manager
■ send commands to a sound channel

■ obtain information about the Sound Manager, a sound channel, all sound channels, or
the system alert sound’s status

■ compress and expand audio data

■ manage the reading and writing of double sound buffers

The section “Application-Defined Routines” on page 2-151 describes routines that your
application might need to define, including callback procedures, completion routines,
and doubleback procedures.

Assembly-Language Note

Most Sound Manager routines are accessed through the
_SoundDispatch selector. However, the SndAddModifier,
SndControl, SndDisposeChannel, SndDoCommand,
SndDoImmediate, SndNewChannel, and SndPlay functions and the
SysBeep procedure are accessed through their own trap macros. See
“Summary of the Sound Manager,” which begins on page 2-157, for a
list of trap selector numbers. ◆

Playing Sound Resources 2

You can use the SysBeep procedure to play the system alert sound. Alert sounds are
stored in the System file as format 1 'snd ' resources. You can use the SndPlay
function to play the sounds that are stored in any 'snd ' resource, either format 1 or
format 2.

The SysBeep and SndPlay routines are the highest-level sound routines that the
Sound Manager provides. Depending on the needs of your application, you might be
able to accomplish all desired sound-related activity simply by using SysBeep to
produce the system alert sound or by using SndPlay to play other sounds that are
stored as 'snd ' resources.

SysBeep 2

You can use the SysBeep procedure to play the system alert sound.

PROCEDURE SysBeep (duration: Integer);

duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when the
system alert sound is the Simple Beep. The recommended duration is 30
ticks, which equals one-half second.
2-120 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
DESCRIPTION

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the
GetSysBeepVolume and SetSysBeepVolume routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

SEE ALSO

For information on enabling and disabling the system alert sound, see the description of
SndGetSysBeepState and SndGetSysBeepState on page 2-137. For information on
reading or adjusting the system alert sound volume, see “Controlling Volume Levels”
beginning on page 2-139.

SndPlay 2

You can use the SndPlay function to play a sound resource that your application has
loaded into memory.

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NIL is passed in the first
parameter.
Sound Manager Reference 2-121

C H A P T E R 2

Sound Manager
DESCRIPTION

The SndPlay function attempts to play the sound located at sndHdl, which is expected
to have the structure of a format 1 or format 2 'snd ' resource. If the resource has not
yet been loaded, the SndPlay function fails and returns the resProblem result code.

All commands and data contained in the sound handle are then sent to the channel. Note
that you can pass SndPlay a handle to some data created by calling the Sound Input
Manager’s SndRecord function as well as a handle to an actual 'snd ' resource that
you have loaded into memory.

▲ W A R N I N G

In some versions of system software prior to system software version
7.0, the SndPlay function will not work properly with sound resources
that specify the sound data type twice. This might happen if a resource
specifies that a sound consists of sampled-sound data and an
application does the same when creating a sound channel. For more
information on this problem, see “Allocating Sound Channels” on
page 2-20. ▲

The chan parameter is a pointer to a sound channel. If chan is not NIL, it is used as
a valid channel. If chan is NIL, an internally allocated sound channel is used. If you
do supply a sound channel pointer in the chan parameter, you can play the sound
asynchronously. When a sound is played asynchronously, a callback procedure can be
called when a callBackCmd command is processed by the channel. (This procedure
is the callback procedure supplied to SndNewChannel.) See “Playing Sounds
Asynchronously” on page 2-46 for more information on playing sounds asynchronously.
The handle you pass in the sndHdl parameter must be locked for as long as the sound is
playing asynchronously.

If a format 1 'snd ' resource does not specify which type of sound data is to be played,
SndPlay defaults to square-wave data. SndPlay also supports format 2 'snd '
resources using sampled-sound data and a bufferCmd command. Note that to use
SndPlay and sampled-sound data with a format 1 'snd ' resource, the resource must
include a bufferCmd command.

SPECIAL CONSIDERATIONS

Because the SndPlay function moves memory, you should not call it at interrupt time.

RESULT CODES

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
2-122 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SEE ALSO

For an example of how to play a sound resource using the SndPlay function, see the
chapter “Introduction to Sound on the Macintosh” in this book.

For information on playing a sound resource without using the SndPlay function, see
“Playing Sounds Using Low-Level Routines” on page 2-61.

Playing From Disk 2

Use the SndStartFilePlay, SndPauseFilePlay, and SndStopFilePlay functions
to manage a continuous play from disk.

SndStartFilePlay 2

You can call the SndStartFilePlay function to initiate a play from disk.

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;

 resNum: Integer; bufferSize: LongInt;

 theBuffer: Ptr;

theSelection: AudioSelectionPtr;

theCompletion: ProcPtr;

async: Boolean): OSErr;

chan A pointer to a valid sound channel. You can pass NIL instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate
a sound channel in your application’s heap zone.

fRefNum The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSize
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndStartFilePlay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

theBuffer A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NIL, the Sound
Manager allocates two buffers, each half the size of the value specified in
the bufferSize parameter. If this parameter is not NIL, the buffer
should be a nonrelocatable block of size bufferSize.

theSelection
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NIL to specify that the Sound
Manager should play the entire sound.
Sound Manager Reference 2-123

C H A P T E R 2

Sound Manager
theCompletion
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NIL to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NIL in the chan parameter and TRUE for
this parameter, the SndStartFilePlay function returns the
badChannel result code.

DESCRIPTION

The SndStartFilePlay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan is not NIL, it is
used as a valid channel. If chan is NIL, an internally allocated sound channel is used for
play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFilePlay and SndStopFilePlay require a sound-channel pointer,
you must allocate your own channel if you wish to use those routines.

The sounds you wish to play can be stored either in a file or in an 'snd ' resource. If
you are playing a file, then fRefNum should be the file reference number of the file to be
played and the parameter resNum should be set to 0. If you are playing an 'snd '
resource, then fRefNum should be set to 0 and resNum should be the resource ID
number (not the file reference number) of the resource to play.

▲ W A R N I N G

The SndStartFilePlay function might not play 'snd ' resources
from disk correctly. In particular, the function will not execute correctly
if any resource in the resource file containing the 'snd ' resource you
wish to play has been changed through a call to the WriteResource
procedure and you have not updated the resource file using the
UpdateResFile procedure. To avoid this and other problems, you
should use the SndStartFilePlay function to play only sound files. ▲

SPECIAL CONSIDERATIONS

Because the SndStartFilePlay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStartFilePlay function are

Trap macro Selector

_SoundDispatch $0D000008
2-124 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
RESULT CODES

SEE ALSO

For an example of how to play a sound file, see the chapter “Introduction to Sound on
the Macintosh” in this book.

For information on the format of a completion routine, see “Completion Routines” on
page 2-151.

SndPauseFilePlay 2

You can use the SndPauseFilePlay function to toggle the state of a play from disk in
progress, just as you might use the pause button on an audiocassette tape player to
temporarily pause and then resume play.

FUNCTION SndPauseFilePlay (chan: SndChannelPtr): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndStartFilePlay function.

DESCRIPTION

The SndPauseFilePlay function suspends the play from disk on the channel specified
by the chan parameter if that play from disk is not already paused; the function resumes
play if the play from disk is already paused.

The SndPauseFilePlay function is used in conjunction with SndStopFilePlay to
control play from disk on a sound channel. Note that this call can be made only if your
application has already called SndStartFilePlay with a valid sound channel. You
cannot use this function with a synchronous call to SndStartFilePlay because, in that
case, program control does not return to the caller until after the sound has completely
finished playing.

If the channel specified by the chan parameter is not being used for play from disk, then
SndPauseFilePlay returns the result code channelNotBusy. If the channel is busy

noErr 0 No error
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or

AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
siInvalidCompression –223 Invalid compression type
Sound Manager Reference 2-125

C H A P T E R 2

Sound Manager
and paused, then play from disk is resumed. If the channel is busy and the channel is not
paused, then play from disk is suspended.

SPECIAL CONSIDERATIONS

You can call the SndPauseFilePlay function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndPauseFilePlay function are

RESULT CODES

SndStopFilePlay 2

You can use SndStopFilePlay to stop an asynchronous play from disk.

FUNCTION SndStopFilePlay (chan: SndChannelPtr;

quietNow: Boolean): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndStartFilePlay function.

quietNow A Boolean value that indicates whether the play from disk should be
stopped immediately (TRUE) or when it completes execution (FALSE).

DESCRIPTION

The SndStopFilePlay function either can stop an asynchronous play from disk
immediately or can take control of the CPU until a play from disk finishes. The
SndStopFilePlay function does not return until all asynchronous file I/O calls have
completed and any internally allocated memory has been released. If async is FALSE,
then SndStopFilePlay lets the sound complete normally and returns only after the
sound has completed, all asynchronous file I/O calls have completed, and any internal
allocated memory has been released.

For example, you might use the function to stop the playing of a sound file if the user
selects an option that turns off sound output while the file is already playing. In that
case, you would pass TRUE to quietNow. Alternatively, you might have started a sound

Trap macro Selector

_SoundDispatch $02040008

noErr 0 No error
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable
channelNotBusy –211 Channel not currently used
2-126 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
playing asynchronously so that you could perform other tasks while the sound plays.
But you might then finish those other tasks and want to convert the play from disk into a
synchronous play. By passing FALSE to quietNow, you effectively achieve that.

SPECIAL CONSIDERATIONS

Because the SndStopFilePlay function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndStopFilePlay function are

RESULT CODES

Allocating and Releasing Sound Channels 2

If you use a high-level Sound Manager routine to play sounds, you might be able to let
the Sound Manager internally allocate a sound channel. However, to use low-level
sound commands or to take full advantage of the Sound Manager’s high-level routines,
you must allocate your own sound channels. The SndNewChannel function allows your
application to allocate a new sound channel, and the SndDisposeChannel function
allows your application to dispose of it.

SndNewChannel 2

You can use the SndNewChannel function to allocate a new sound channel.

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: Integer;

init: LongInt; userRoutine: ProcPtr):

OSErr;

chan A pointer to a sound channel record. You can pass a pointer whose value
is NIL to force the Sound Manager to allocate the sound channel record
internally.

synth The sound data type you intend to play on this channel. If you do not
want to specify a specific data type, pass 0 in this parameter. You might
do this if you plan to use the channel to play a single sound resource that
itself specifies the sound’s data type.

Trap macro Selector

_SoundDispatch $03080008

noErr 0 No error
badChannel –205 Channel is corrupt or unusable
Sound Manager Reference 2-127

C H A P T E R 2

Sound Manager
init The desired initialization parameters for the channel. If you cannot
determine what types of sounds you will be playing on the channel, pass
0 in this parameter. Only sounds defined by wave-table data and
sampled-sound data currently use the init options. You can use the
Gestalt function to determine if a sound feature (such as stereo output)
is supported by a particular computer.

userRoutine
A pointer to a callback procedure that the Sound Manager executes
whenever it receives a callBackCmd command. If you pass NIL as the
userRoutine parameter, then any callBackCmd commands sent to this
channel are ignored.

DESCRIPTION

The SndNewChannel function internally allocates memory to store a queue of sound
commands. If you pass a pointer to NIL as the chan parameter, the function also
allocates a sound channel record in your application’s heap and returns a pointer to that
record. If you do not pass a pointer to NIL as the chan parameter, then that parameter
must contain a pointer to a sound channel record.

If you pass a pointer to NIL as the chan parameter, then the amount of memory the
SndNewChannel function allocates to store the sound commands is enough to store
128 sound commands. However, if you pass a pointer to the sound channel record rather
than a pointer to NIL, the amount of memory allocated is determined by the qLength
field of the sound channel record. Thus, if you wish to control the size of the sound
queue, you must allocate your own sound channel record. Regardless of whether you
allocate your own sound channel record, the Sound Manager allocates memory for the
sound command queue internally.

The synth parameter specifies the sound data type you intend to play on this channel.
You can use these constants to specify the data type:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

In Sound Manager versions earlier than version 3.0, only one data type can be produced
at any one time. As a result, SndNewChannel may fail if you attempt to open a channel
specifying a data type other than the one currently being played.

To specify a sound output device other than the current sound output device, pass the
value kUseOptionalOutputDevice in the synth parameter and the signature of the
desired sound output device component in the init parameter.

CONST

kUseOptionalOutputDevice = -1;

The ability to redirect output away from the current sound output device is intended for
use by specialized applications that need to use a specific sound output device. In
2-128 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
general, your application should always send sound to the current sound output device
selected by the user.

SPECIAL CONSIDERATIONS

Because the SndNewChannel function allocates memory, you should not call it at
interrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndNewChannel function, see Listing 2-1 on
page 2-20.

For information on the format of a callback procedure, see “Callback Procedures” on
page 2-152.

SndDisposeChannel 2

If you allocate a sound channel by calling the SndNewChannel function, you must
release the memory it occupies by calling the SndDisposeChannel function.

FUNCTION SndDisposeChannel (chan: SndChannelPtr;

quietNow: Boolean): OSErr;

chan A pointer to a valid sound channel record.

quietNow A Boolean value that indicates whether the channel should be disposed
immediately (TRUE) or after sound stops playing (FALSE).

DESCRIPTION

The SndDisposeChannel function disposes of the queue of sound commands
associated with the sound channel specified in the chan parameter. If your application
created its own sound channel record in memory or installed a sound as a voice in a
channel, the Sound Manager does not dispose of that memory. The Sound Manager also
does not release memory associated with a sound resource that you have played on
a channel. You might use the userInfo field of the sound channel record to store
the address of a sound handle you wish to release before disposing of the sound
channel itself.

noErr 0 No error
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
Sound Manager Reference 2-129

C H A P T E R 2

Sound Manager
The SndDisposeChannel function can dispose of a channel immediately or wait
until the queued commands are processed. If quietNow is set to TRUE, a flushCmd
command and then a quietCmd command are sent to the channel bypassing
the command queue. This removes all commands, stops any sound in progress, and
closes the channel. If quietNow is set to FALSE, then the Sound Manager issues a
quietCmd command only; it does not bypass the command queue, and it waits until
the quietCmd command is processed before disposing of the channel.

SPECIAL CONSIDERATIONS

Because the SndDisposeChannel function might dispose of memory, you should not
call it at interrupt time.

RESULT CODES

Sending Commands to a Sound Channel 2

Once a sound channel is opened, you can send commands to that channel by issuing
requests with the SndDoCommand and SndDoImmediate functions.

The section “Sound Command Numbers” beginning on page 2-92 lists the sound
commands that you can send using SndDoCommand, SndDoImmediate, or (in several
cases) SndControl.

SndDoCommand 2

You can queue a command in a sound channel by calling the SndDoCommand function.

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;

noWait: Boolean): OSErr;

chan A pointer to a valid sound channel.

cmd A sound command to be sent to the channel specified in the chan
parameter.

noWait A flag indicating whether the Sound Manager should wait for a free space
in a full queue (FALSE) or whether it should return immediately with a
queueFull result code if the queue is full (TRUE).

DESCRIPTION

The SndDoCommand function sends the sound command specified in the cmd parameter
to the end of the command queue of the channel specified in the chan parameter.

noErr 0 No error
badChannel –205 Channel is corrupt or unusable
2-130 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
The noWait parameter has meaning only if a sound channel’s queue of sound
commands is full. If the noWait parameter is set to FALSE and the queue is full, the
Sound Manager waits until there is space to add the command, thus preventing your
application from doing other processing. If noWait is set to TRUE and the queue is full,
the Sound Manager does not send the command and returns the queueFull result code.

SPECIAL CONSIDERATIONS

Whether SndDoCommand moves memory depends on the particular sound command
you’re sending it. Most of the available sound commands do not cause SndDoCommand
to move memory and can therefore be issued at interrupt time. Moreover, you can
sometimes safely send commands at interrupt time that would otherwise cause memory
to move if you’ve previously issued the soundCmd sound command to preconfigure the
channel at noninterrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndDoCommand function, see Listing 2-15 on
page 2-42.

SndDoImmediate 2

You can use the SndDoImmediate function to place a sound command in front of a
sound channel’s command queue.

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand):

OSErr;

chan A pointer to a sound channel.

cmd A sound command to be sent to the channel specified in the
chan parameter.

DESCRIPTION

The SndDoImmediate function operates much like SndDoCommand, except that it
bypasses the existing command queue of the sound channel and sends the specified
command directly to the Sound Manager for immediate processing. This routine also
overrides any waitCmd, pauseCmd, or syncCmd commands that might have already
been processed. However, other commands already received by the Sound Manager will

noErr 0 No error
queueFull –203 No room in the queue
badChannel –205 Channel is corrupt or unusable
Sound Manager Reference 2-131

C H A P T E R 2

Sound Manager
not be interrupted by the SndDoImmediate function (although a quietCmd command
sent via SndDoImmediate will quiet a sound already playing).

SPECIAL CONSIDERATIONS

Whether SndDoImmediate moves memory depends on the particular sound command
you’re sending it. Most of the available sound commands do not cause
SndDoImmediate to move memory and can therefore be issued at interrupt time.
Moreover, you can sometimes safely send commands at interrupt time that would
otherwise cause memory to move if you’ve previously issued the soundCmd sound
command to preconfigure the channel at noninterrupt time.

RESULT CODES

SEE ALSO

For an example of a routine that uses the SndDoImmediate function, see Listing 2-4 on
page 2-26.

Obtaining Information 2

To obtain information about whether a computer supports certain sound features, you
should use the Gestalt function, documented in Inside Macintosh: Operating System
Utilities. Sometimes, however, you might need information the Gestalt function is not
able to provide. The Sound Manager provides a number of routines that you can use to
obtain additional sound-related information.

You can obtain the version numbers of the Sound Manager and the MACE tools by
calling the SndSoundManagerVersion and MACEVersion functions, respectively. You
can obtain information about a sound channel and about all sound channels by calling
the SndControl, SndChannelStatus, and SndManagerStatus functions,
respectively.

The Sound Manager includes two routines—SndGetSysBeepState and
SndSetSysBeepState—that allow you to determine and alter the status of the
system alert sound.

To play a sound resource using low-level Sound Manager routines, you need the address
of the sound header stored in the sound resource. Sound Manager versions 3.0 and
later provide the GetSoundHeaderOffset function that you can use to obtain
that information.

noErr 0 No error
badChannel –205 Channel is corrupt or unusable
2-132 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SndSoundManagerVersion 2

You can use SndSoundManagerVersion to determine the version of the Sound
Manager tools available on a computer.

FUNCTION SndSoundManagerVersion: NumVersion;

DESCRIPTION

The SndSoundManagerVersion function returns a version number that contains the
same information as in the first 4 bytes of a 'vers' resource. You might use the
SndSoundManagerVersion function to determine if a computer has the enhanced
Sound Manager, which is necessary for multichannel sound and for continuous plays
from disk.

SPECIAL CONSIDERATIONS

You can call the SndSoundManagerVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndSoundManagerVersion function are

SEE ALSO

For information on how to use the SndSoundManagerVersion function to determine
whether the enhanced Sound Manager is available, see “Obtaining Version Information”
on page 2-34.

MACEVersion 2

You can use MACEVersion to determine the version of the MACE tools available on a
machine.

FUNCTION MACEVersion: NumVersion;

DESCRIPTION

The MACEVersion function returns a version number that contains the same
information as in the first 4 bytes of a 'vers' resource.

Trap macro Selector

_SoundDispatch $000C0008
Sound Manager Reference 2-133

C H A P T E R 2

Sound Manager
SPECIAL CONSIDERATIONS

You can call the MACEVersion function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the MACEVersion function are

SndControl 2

You can obtain information about a sound data type by using the SndControl function.
In Sound Manager version 3.0 and later, however, you virtually never need to call
SndControl. The capabilities that SndControl provides are either provided by the
Gestalt function or are no longer supported. The SndControl function is
documented here for completeness only.

FUNCTION SndControl (id: Integer; VAR cmd: SndCommand): OSErr;

id The sound data type you want to get information about.

cmd A sound command.

DESCRIPTION

The SndControl function sends a control command directly to the Sound Manager to
get information about a specific data type. The available data types are specified by
constants:

CONST

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

You can call SndControl even if no channel has been created for the type of data you
want to get information about. SndControl can be used with the availableCmd or
versionCmd sound commands to request information. The requested information is
returned in the sound command record specified by the cmd parameter.

IMPORTANT

The SndControl function can indicate only whether a particular data
format supports some feature (for example, stereo output), not whether
the available sound hardware also supports that feature. In general, you
should use the Gestalt function to determine whether the sound
features you need are available in the current operating environment. ▲

Trap macro Selector

_SoundDispatch $00000010
2-134 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
In Sound Manager version 2.0, you can also use the totalLoadCmd and loadCmd
commands to get information about the amount of CPU time consumed by
sound-related processing. However, these commands are not very accurate and are
not supported by version 3.0 and later.

SPECIAL CONSIDERATIONS

You should not call the SndControl function at interrupt time.

RESULT CODES

SEE ALSO

See the list of sound commands in “Sound Command Numbers” beginning on page 2-92
for a complete description of the sound commands supported by SndControl.

SndChannelStatus 2

You can use the SndChannelStatus function to determine the status of a sound
channel.

FUNCTION SndChannelStatus (chan: SndChannelPtr;

theLength: Integer;

theStatus: SCStatusPtr): OSErr;

chan A pointer to a valid sound channel.

theLength The size in bytes of the sound channel status record. You should set this
field to SizeOf(SCStatus).

theStatus A pointer to a sound channel status record.

DESCRIPTION

If the SndChannelStatus function executes successfully, the fields of the record
specified by theStatus accurately describe the sound channel specified by chan.

SPECIAL CONSIDERATIONS

You can call the SndChannelStatus function at interrupt time.

noErr 0 No error
Sound Manager Reference 2-135

C H A P T E R 2

Sound Manager
ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndChannelStatus function are

RESULT CODES

SEE ALSO

For information on the structure of a sound channel status record, see “Sound Channel
Status Records” on page 2-101.

SndManagerStatus 2

You can use the SndManagerStatus function to determine information about all sound
channels currently allocated.

FUNCTION SndManagerStatus (theLength: Integer;

theStatus: SMStatusPtr): OSErr;

theLength The size in bytes of the Sound Manager status record. You should set this
field to SizeOf(SMStatus).

theStatus A pointer to a Sound Manager status record.

DESCRIPTION

The SndManagerStatus function determines information about all currently allocated
sound channels. If the SndManagerStatus function executes successfully, the fields
of the record specified by theStatus accurately describe the current status of the
Sound Manager.

SPECIAL CONSIDERATIONS

You can call the SndManagerStatus function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndManagerStatus function are

Trap macro Selector

_SoundDispatch $00100008

noErr 0 No error
paramErr –50 A parameter is incorrect
badChannel –205 Channel is corrupt or unusable

Trap macro Selector

_SoundDispatch $00140008
2-136 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
RESULT CODES

SndGetSysBeepState 2

You can use the SndGetSysBeepState procedure to determine if the system alert
sound is enabled.

PROCEDURE SndGetSysBeepState (VAR sysBeepState: Integer);

sysBeepState
On exit, the state of the system alert sound.

DESCRIPTION

The SndGetSysBeepState procedure returns one of two states in the sysBeepState
parameter, either the sysBeepDisable or the sysBeepEnable constant.

CONST

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

SPECIAL CONSIDERATIONS

You can call the SndGetSysBeepState procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndGetSysBeepState procedure are

SndSetSysBeepState 2

You can use the SndSetSysBeepState function to set the state of the system alert
sound.

FUNCTION SndSetSysBeepState (sysBeepState: Integer): OSErr;

sysBeepState
The desired state of the system alert sound.

noErr 0 No error

Trap macro Selector

_SoundDispatch $00180008
Sound Manager Reference 2-137

C H A P T E R 2

Sound Manager
DESCRIPTION

You can use the SndSetSysBeepState function to temporarily disable the system alert
sound while you play a sound and then enable the alert sound when you are done.
The sysBeepState parameter should be set to either sysBeepDisable or
sysBeepEnable.

If your application disables the system alert sound, be sure to enable it when your
application gets a suspend event.

SPECIAL CONSIDERATIONS

You can call the SndSetSysBeepState function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndSetSysBeepState function are

RESULT CODES

GetSoundHeaderOffset 2

You can use the GetSoundHeaderOffset function to get the offset from the beginning
of a sound resource to the embedded sound header.

FUNCTION GetSoundHeaderOffset (sndHdl: Handle;

VAR offset: LongInt): OSErr;

sndHdl A handle to a sound resource.

offset On exit, the offset from the beginning of the sound resource specified by
the sndHdl parameter to the beginning of the sound header within that
sound resource.

DESCRIPTION

The GetSoundHeaderOffset function returns, in the offset parameter, the number
of bytes from the beginning of the sound resource specified by the sndHdl parameter to
the sound header that is contained within that resource. You might need this information
if you want to use the address of that sound header in a sound command (such as the
soundCmd or bufferCmd sound command).

The handle passed to GetSoundHeaderOffset does not have to be locked.

Trap macro Selector

_SoundDispatch $001C0008

noErr 0 No error
paramErr –50 A parameter is incorrect
2-138 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SPECIAL CONSIDERATIONS

The GetSoundHeaderOffset function is available only in version 3.0 and later of the
Sound Manager. See “Obtaining a Pointer to a Sound Header” beginning on page 2-57
for a function you can call in earlier versions of the Sound Manager to obtain the same
information.

You can call the GetSoundHeaderOffset function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSoundHeaderOffset function are

RESULT CODES

SEE ALSO

See Listing 2-27 on page 2-57 for an example of calling GetSoundHeaderOffset.

Controlling Volume Levels 2

You can use the GetSysBeepVolume and SetSysBeepVolume functions to get and set
the volume level of the system alert sound. You can use GetDefaultOutputVolume
and SetDefaultOutputVolume to get and set the default output volume for a
particular output device.

IMPORTANT

These four functions are available only in Sound Manager version 3.0
and later. ▲

With all of these functions, you specify a volume with a 16-bit value, where 0 represents
no volume (that is, silence) and 256 (hexadecimal $0100) represents full volume. The
right and left volumes of a stereo sound are encoded as the high word and the low word,
respectively, of a 32-bit value. Moreover, it’s possible to overdrive a particular volume
level if you need to amplify a low signal. For example, the long word $02000200 specifies
a volume level of twice full volume on both the left and right channels of a stereo sound.

In addition to the four functions described in this section, Sound Manager version 3.0
introduces two new sound commands, getVolumeCmd and volumeCmd, that you can
use to get and set the volume of a particular sound channel. See page 2-96 for details on
these two sound commands; see “Managing Sound Volumes” beginning on page 2-31 for
a code listing that uses the volumeCmd command.

Trap macro Selector

_SoundDispatch $04040024

noErr 0 No error
badFormat –206 Resource is corrupt or unusable
Sound Manager Reference 2-139

C H A P T E R 2

Sound Manager
GetSysBeepVolume 2

You can use the GetSysBeepVolume function to determine the current volume of the
system alert sound.

FUNCTION GetSysBeepVolume (VAR level: LongInt): OSErr;

level On exit, the current volume level of the system alert sound.

DESCRIPTION

The GetSysBeepVolume function returns, in the level parameter, the current volume
level of the system alert sound. The values returned in the high and low words of the
level parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The GetSysBeepVolume function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSysBeepVolume function are

RESULT CODES

SetSysBeepVolume 2

You can use the SetSysBeepVolume function to set the current volume of the system
alert sound.

FUNCTION SetSysBeepVolume (level: LongInt): OSErr;

level The desired volume level of the system alert sound.

DESCRIPTION

The SetSysBeepVolume function sets the current volume level of the system alert
sound. The values you can specify in the high and low words of the level parameter

Trap macro Selector

_SoundDispatch $02240024

noErr 0 No error
2-140 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
range from 0 (silence) to $0100 (full volume). Any calls to the SysBeep procedure use
the volume set by the most recent call to SetSysBeepVolume.

SPECIAL CONSIDERATIONS

The SetSysBeepVolume function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetSysBeepVolume function are

RESULT CODES

GetDefaultOutputVolume 2

You can use the GetDefaultOutputVolume function to determine the default volume
of a sound output device.

FUNCTION GetDefaultOutputVolume (VAR level: LongInt): OSErr;

level On exit, the default volume level of a sound output device.

DESCRIPTION

The GetDefaultOutputVolume function returns, in the level parameter, the default
volume of a sound output device. The values returned in the high and low words of the
level parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The GetDefaultOutputVolume function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetDefaultOutputVolume function are

Trap macro Selector

_SoundDispatch $02280024

noErr 0 No error

Trap macro Selector

_SoundDispatch $022C0024
Sound Manager Reference 2-141

C H A P T E R 2

Sound Manager
RESULT CODES

SetDefaultOutputVolume 2

You can use the SetDefaultOutputVolume function to set the default volume of a
sound output device.

FUNCTION SetDefaultOutputVolume (level: LongInt): OSErr;

level The desired default volume level of a sound output device.

DESCRIPTION

The SetDefaultOutputVolume function sets the default volume of a sound output
device. The values you can specify in the high and low words of the level parameter
range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The SetDefaultOutputVolume function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetDefaultOutputVolume function are

RESULT CODES

Compressing and Expanding Audio Data 2

You can use the procedures Comp3to1 and Comp6to1 to compress sound data. You can
use the procedures Exp1to3 and Exp1to6 to expand compressed audio data.

noErr 0 No error

Trap macro Selector

_SoundDispatch $02300024

noErr 0 No error
2-142 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Comp3to1 2

You can use the Comp3to1 procedure to compress sound data at a ratio of 3:1.

PROCEDURE Comp3to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

inState: Ptr; outState: Ptr;

numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of samples to be compressed.

outBuffer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to compress, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Comp3to1 procedure compresses cnt samples of sound stored in the buffer
specified by inBuffer and places the result in the buffer specified by outBuffer,
which must be at least cnt/3 bytes in size. The original samples can be monophonic or
include multiple channels of sound, but they must be in 8-bit offset binary format. Also,
if numChannels is greater than 1, then the noncompressed sound must be stored in
interleaved format on a sample basis.

If you compress polyphonic sound, you retain only one channel of sound, which you
specify in the whichChannel parameter. Thus, if you use the Comp3to1 procedure
to compress three-channel sound, you will have effectively compressed the sound to
one-ninth its original size in bytes. To retain multiple channels of sound after
compression, you must call the Comp3to1 procedure for each channel to be compressed
and then interleave the compressed sound data on a packet basis.

The Comp3to1 procedure compresses every 48 bytes of sound data to exactly 16 bytes of
compressed sound data and compresses remaining bytes to no more than one-third the
original size.

You can use the inState and outState parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NIL state buffers and let the Sound Manager allocate the buffers internally.
Sound Manager Reference 2-143

C H A P T E R 2

Sound Manager
SPECIAL CONSIDERATIONS

Because the Comp3to1 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Comp3to1 procedure are

Comp6to1 2

You can use the Comp6to1 procedure to compress sound data at a ratio of 6:1.

PROCEDURE Comp6to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

inState: Ptr; outState: Ptr;

numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of samples to be compressed.

outBuffer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to compress, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Comp6to1 procedure compresses cnt samples of sound stored in the buffer
specified by inBuffer and places the result in the buffer specified by outBuffer,
which must be at least cnt/6 bytes in size. The Comp6to1 procedure works much like
the Comp3to1 procedure, but compresses every 48 bytes of sound data to exactly 8 bytes
of compressed sound data and compresses remaining bytes to no more than one-sixth
the original size.

Trap macro Selector

_SoundDispatch $00040010
2-144 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SPECIAL CONSIDERATIONS

Because the Comp6to1 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Comp6to1 procedure are

Exp1to3 2

You can use the Exp1to3 procedure to expand a buffer of sound samples you
previously have compressed with the Comp3to1 procedure.

PROCEDURE Exp1to3 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

 inState: Ptr; outState: Ptr;

 numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of packets to be expanded.

outBuffer A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

whichChannel
The channel to expand, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Exp1to3 procedure expands cnt packets of sound stored in the buffer specified by
inBuffer and places the result in the buffer specified by outBuffer, whose size must
be at least cnt packets * 2 bytes per packet * 3, or cnt * 6 bytes. If numChannels is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis.

Trap macro Selector

_SoundDispatch $000C0010
Sound Manager Reference 2-145

C H A P T E R 2

Sound Manager
If you expand compressed sound data that includes multiple sound channels, you retain
only one channel of sound, which you specify in the whichChannel parameter. Thus, if
you use the Exp1to3 procedure to expand three-channel sound, the output buffer will
be the same size as the input buffer since only one channel is retained. To retain multiple
channels of sound after expansion, you must call the Exp1to3 procedure for each
channel to be expanded and then interleave the expanded sound data on a sample basis.

The Exp1to3 procedure expands every packet of sampled-sound data to exactly 6 bytes.

You can use the inState and outState parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NIL state buffers and let the Sound Manager allocate the buffers internally.

SPECIAL CONSIDERATIONS

Because the Exp1to3 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Exp1to3 procedure are

Exp1to6 2

You can use the Exp1to6 procedure to expand a buffer of sound samples you
previously have compressed with the Comp6to1 procedure.

PROCEDURE Exp1to6 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;

 inState: Ptr; outState: Ptr;

 numChannels: LongInt; whichChannel: LongInt);

inBuffer A pointer to a buffer of packets to be expanded.

outBuffer A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NIL. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NIL. This buffer might be the same as that specified by the
inState parameter.

numChannels
The number of channels in the buffer pointed to by the inBuffer
parameter.

Trap macro Selector

_SoundDispatch $00080010
2-146 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
whichChannel
The channel to expand, when numChannels is greater than 1. This
parameter must be in the range of 1 to numChannels.

DESCRIPTION

The Exp1to6 procedure expands cnt packets of sound stored in the buffer specified by
inBuffer and places the result in the buffer specified by outBuffer, whose size must
be at least cnt packets * 1 byte per packet * 6, or cnt * 6 bytes. If numChannels is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis. The Exp1to6 procedure works just like the Exp1to3 procedure, but
expands 1-byte packets rather than 2-byte packets.

SPECIAL CONSIDERATIONS

Because the Exp1to6 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Exp1to6 procedure are

Managing Double Buffers 2

If you wish to customize the double buffering algorithm that the Sound Manager uses to
manage a play from disk, you can use the SndPlayDoubleBuffer function. The Sound
Manager’s high-level play-from-disk routines make extensive use of this function.

SndPlayDoubleBuffer 2

The SndPlayDoubleBuffer function is a low-level routine that gives you maximum
efficiency and control over double buffering while still maintaining compatibility with
the Sound Manager.

FUNCTION SndPlayDoubleBuffer (chan: SndChannelPtr;

theParams: SndDoubleBufferHeaderPtr): OSErr;

chan A pointer to a valid sound channel.

theParams A pointer to a sound double buffer header record.

Trap macro Selector

_SoundDispatch $00100010
Sound Manager Reference 2-147

C H A P T E R 2

Sound Manager
DESCRIPTION

The SndPlayDoubleBuffer function launches a low-level sound play using the
information in the double buffer header record specified by theParams. After your
application calls this function, the Sound Manager repeatedly calls the doubleback
procedure you specify in the double buffer header record. The doubleback procedure
then manages the filling of buffers of sound data from disk whenever one of the two
buffers specified in the double buffer header record becomes exhausted.

SPECIAL CONSIDERATIONS

Because the SndPlayDoubleBuffer function might move memory, you should not call
it at interrupt time.

You can use the SndPlayDoubleBuffer function only on a Macintosh computer that
supports the play-from-disk routines. For information on how to determine whether a
computer supports these routines, see “Testing for Multichannel Sound and
Play-From-Disk Capabilities” on page 2-35.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SndPlayDoubleBuffer function are

RESULT CODES

SEE ALSO

For information on the format of a doubleback procedure, see “Doubleback Procedures”
on page 2-153.

Performing Unsigned Fixed-Point Arithmetic 2

This section describes the UnsignedFixMulDiv function provided by the Sound
Manager that you can use to perform multiplication and division on unsigned
fixed-point numbers.

Trap macro Selector

_SoundDispatch $00200008

noErr 0 No error
badChannel –205 Channel is corrupt or unusable
2-148 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
UnsignedFixMulDiv 2

You can use the UnsignedFixMulDiv function to perform multiplications and
divisions on unsigned fixed-point numbers. You’ll typically use it to calculate
sample rates.

FUNCTION UnsignedFixMulDiv (value: UnsignedFixed;

multiplier: UnsignedFixed;

divisor: UnsignedFixed):

UnsignedFixed;

value The value to be multiplied and divided.

multiplier
The multiplier to be applied to the value in the value parameter.

divisor The divisor to be applied to the value in the value parameter.

DESCRIPTION

The UnsignedFixMulDiv function returns the fixed-point number that is the value of
the value parameter, multiplied by the value in the multiplier parameter and
divided by the value in the divisor parameter. Note that UnsignedFixMulDiv
performs both operations before returning. If you want to perform only a multiplication
or only a division, pass the value $00010000 for whichever parameter you want to
ignore. For example, to determine the sample rate that is twice that of the 22 kHz rate,
you can use UnsignedFixMulDiv as follows:

myNewRate := UnsignedFixMulDiv(rate22kHz, $00020000, $00010000);

Similarly, to determine the sample rate that is half that of the 44 kHz rate, you can use
UnsignedFixMulDiv as follows:

myNewRate := UnsignedFixMulDiv(rate44kHz, $00010000, $00020000);

SPECIAL CONSIDERATIONS

The UnsignedFixMulDiv function is available only in versions 3.0 and later of the
Sound Manager.

Linking Modifiers to Sound Channels 2

Early versions of the Sound Manager allowed application developers to use modifiers
to alter sound commands before being processed by the Sound Manager. The Sound
Manager no longer supports this capability. SndAddModifier is documented here for
completeness only.
Sound Manager Reference 2-149

C H A P T E R 2

Sound Manager
SndAddModifier 2

The Sound Manager previously used the SndAddModifier function to link modifiers to
sound channels.

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;

 id: Integer; init: LongInt): OSErr;

chan A pointer to a valid sound channel.

modifier A pointer to a modifier function to be added to the sound channel
specified by chan. This field is obsolete.

id The resource ID of the modifier to be linked to the sound channel.

init The initialization parameters for the sound channel specified by chan.

DESCRIPTION

The SndAddModifier function installs a modifier into an open channel specified in the
chan parameter. The modifier parameter should be NIL, and the id parameter is the
resource ID of the modifier to be linked to the sound channel. SndAddModifier causes
the Sound Manager to load the specified 'snth' resource, lock it in memory, and link it
to the channel specified.

IMPORTANT

The SndAddModifier function is for internal Sound Manager use only.
You should not call it in your application. ▲

The only supported use of the SndAddModifier function is to change the data
type associated with a sound channel. For example, you can pass the constant
sampledSynth in the id parameter to reconfigure a sound channel for sampled-sound
data. You should, however, set a sound channel’s data type when you call
SndNewChannel, not by calling SndAddModifier.

SPECIAL CONSIDERATIONS

You should not use the SndAddModifier function.

RESULT CODES

SEE ALSO

To modify sampled-sound data immediately before the Sound Manager plays it, you can
customize double buffering routines so that your application can modify sampled-sound

noErr 0 No error
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
2-150 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
data when it fills a buffer of sound data for the Sound Manager to play. For more
information, see “Using Double Buffers” on page 2-68.

To change the initialization options for a sound channel, you can use the reInitCmd
command. For a description of that command, see “Sound Command Numbers”
beginning on page 2-92.

Application-Defined Routines 2
The Sound Manager allows you to define a completion routine that execute when a
play from disk finishes executing, a callback procedure that executes whenever your
application issues the callBackCmd command, and a doubleback procedure that
you must define if you wish to customize the double buffering of data during a play
from disk.

Completion Routines 2

You can specify a completion routine as the seventh parameter to the
SndStartFilePlay function. The completion routine executes when the sound file
finishes playing (unless sound play was stopped by the SndStopFilePlay function).

MyCompletionRoutine 2

A Sound Manager completion routine has the following syntax:

PROCEDURE MyFilePlayCompletionRoutine (chan: SndChannelPtr);

chan A pointer to the sound channel on which a play from disk has completed.

DESCRIPTION

The Sound Manager executes your completion routine when a play from disk on the
channel specified by the chan parameter finishes. You might use the completion routine
to set a global flag that alerts the application that it must dispose of the sound channel.

SPECIAL CONSIDERATIONS

A completion routine is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your completion routine needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the userInfo field of the sound channel pointed to by
the chan parameter to pass that value to your completion routine.)
Sound Manager Reference 2-151

C H A P T E R 2

Sound Manager
ASSEMBLY-LANGUAGE INFORMATION

Because this routine is called at interrupt time, it must preserve all registers other than
A0–A1 and D0–D2.

SEE ALSO

For information on how you can use completion routines to help manage an
asynchronous play from disk, see “Managing an Asynchronous Play From Disk” on
page 2-52.

Callback Procedures 2

You can specify a callback procedure as the fourth parameter to the SndNewChannel
function. The callback procedure executes whenever the Sound Manager processes a
callBackCmd command for the channel.

MyCallbackProcedure 2

A callback procedure has the following syntax:

PROCEDURE MyCallbackProcedure (theChan: SndChannelPtr;

theCmd: SndCommand);

theChan A pointer to the sound channel on which a callBackCmd command
was issued.

theCmd The sound command record in which a callBackCmd command was
issued.

DESCRIPTION

The Sound Manager executes the callback procedure associated with a sound channel
whenever it processes a callBackCmd command for the channel. You can use a callback
procedure to set a global flag that alerts the application that it must dispose of the sound
channel. Or, you can use a callback procedure so that your application can synchronize a
series of sound commands with other actions.

SPECIAL CONSIDERATIONS

A callback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the userInfo field of the sound channel pointed to by
the theChan parameter or the param2 field of the sound command specified in the
theCmd parameter to pass that value to your callback procedure.)
2-152 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
ASSEMBLY-LANGUAGE INFORMATION

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0–A1 and D0–D2.

SEE ALSO

For information on how you can use callback procedures when playing sound
asynchronously, see “Using Callback Procedures” on page 2-47.

Doubleback Procedures 2

If you wish to customize the double buffering of sound during a play from disk, you
must use the SndPlayDoubleBuffer function and define a doubleback procedure.
Doubleback procedures also give you the power to modify sampled-sound data
immediately before the Sound Manager plays it.

MyDoubleBackProc 2

A doubleback procedure has the following syntax:

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;

exhaustedBuffer: SndDoubleBufferPtr);

chan A pointer to a sound channel on which a play from disk is executing.

exhaustedBuffer
A pointer to a sound double buffer record

DESCRIPTION

The Sound Manager calls the doubleback procedure associated with a play from disk
whenever the Sound Manager has exhausted the buffer. As the doubleback procedure
refills the buffer, the Sound Manager plays the other buffer. Your application might also
call the doubleback procedure twice to fill both buffers before the initial call to
SndPlayDoubleBuffer function.

When your doubleback procedure is called, it must

■ fill the buffer specified in the exhaustedBuffer parameter with the next set of
sound frames that the Sound Manager must play

■ set the dbNumFrames field of the sound double buffer record to the number of frames
in the buffer

■ set the dbBufferReady bit of the dbFlags field of the sound double buffer record

If your doubleback procedure fills the buffer with the last frames of sound that need to
be played, then your procedure should set the dbLastBuffer bit of the dbFlags field
of the sound double buffer record.
Sound Manager Reference 2-153

C H A P T E R 2

Sound Manager
Your doubleback procedure might fill the buffer with data from any of several sources.
For example, the doubleback procedure might compute the data, copy it from elsewhere
in RAM, or read it from disk. A doubleback procedure can also read data from disk and
then modify the data. This might be useful, for example, if you would like the Sound
Manager to be able to play sampled-sound data stored in 16-bit binary offset format.
Your doubleback procedure could translate the data to the 8-bit binary offset format that
the Sound Manager can read before placing it in the buffer.

SPECIAL CONSIDERATIONS

A doubleback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use one of the two long integers in the dbUserInfo field of
the sound double buffer record specified by the exhaustedBuffer parameter to pass
that value to your callback procedure.)

ASSEMBLY-LANGUAGE INFORMATION

Because a doubleback procedure is called at interrupt time, it must preserve all registers
other than A0–A1 and D0–D2.

SEE ALSO

For an example of how you might use doubleback procedures, see “Using Double
Buffers” on page 2-68.

Resources 2
This section describes the structure of format 1 and format 2 sound resources. For a more
complete discussion of the structure of sound resources, see “Sound Resources” on
page 2-74.

The Sound Resource 2

You can store sound commands and sound data as a resource with the resource type
'snd '. Resource IDs from 0 to 8191 are reserved by Apple Computer, Inc. You may use
all other resource IDs for your 'snd ' resources.

You can use the GetResource function to search all open resource files for the first
'snd ' resource type with the given ID. The 'snd ' resource type defines a sound
resource. Figure 2-8 shows the structure of a sound resource.
2-154 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Figure 2-8 The 'snd ' resource type

Often, you can create a sound resource simply by using the SndRecord function,
documented in the chapter “Introduction to Sound on the Macintosh” in this book.
However, you can also define a sound resource manually. This is especially useful for
sound resources that are simply series of sound commands and contain no
sampled-sound data. Also, you might construct a sound resource that contains
wave-table data manually. A sound resource contains the following elements:

■ Sound resource header. The gives information about the format of a sound resource,
as explained below.

■ Number of sound commands. Following the sound resource header is a word
indicating the number of sound commands contained in the resource.

■ Sound commands. Each sound command is 8 bytes, which includes 2 bytes that
identify the command, 2 bytes for the command’s first parameter, and 4 bytes for the
command’s second parameter. When a sound command contained in an 'snd '
resource has associated sound data, the high bit (defined by the dataOffsetFlag
constant) should be set. This tells the Sound Manager that the value in the second
parameter is an offset from the beginning of the resource and not a pointer to a
memory location.

■ Sound data. For a format 1 'snd ' resource, this field might contain wave-table data
or a sampled sound header that includes sampled-sound data. For a format 2 'snd '
resource, this field should contain a sampled sound header that includes
sampled-sound data.

The format of the sound resource header differs depending on whether the 'snd '
resource is format 1 or format 2. Figure 2-9 illustrates the formats of the two types of

Sound resource header

Number of sound commands 2

First sound command 8

Last sound command 8

Sampled-sound data

or wave-table data

Optional

'snd ' resource type

Variable

Variable

Bytes
Sound Manager Reference 2-155

C H A P T E R 2

Sound Manager
sound resource header. Both sound headers begin with a format field, which defines the
format of the sound resource as either $0001 or $0002.

Figure 2-9 The sound resource header

■ Format 1 sound resource header. For format 1 'snd ' resources, the sound resource
header includes a word that indicates the number of data types to be sent to the sound
channel. Because a sound channel cannot play more than one type of sound data, you
should typically specify either $00 or $01 in this field. If you specify $01 or more, then
the sound resource header contains both a word specifying the data type and a long
word specifying the initialization options for each data type.

■ Format 2 sound resource header. For format 2 'snd ' resources, the sound resource
header next includes a single word that the Sound Manager ignores. This word is
known as the reference count field. Your application can use this field as it pleases.

Sound resource header

'snd ' resource header

'snd ' resource header

0001

Number of data formats

First data format ID

Init option for channel

0002

Reference count

2-156 Sound Manager Reference

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Summary of the Sound Manager 2

Pascal Summary 2

Constants 2

CONST

{Gestalt sound attributes selector and response bits}

gestaltSoundAttr = 'snd ';{sound attributes selector}

gestaltStereoCapability = 0; {built-in hw can play stereo sounds}

gestaltStereoMixing = 1; {built-in hw mixes stereo to mono}

gestaltSoundIOMgrPresent = 3; {sound input routines available}

gestaltBuiltInSoundInput = 4; {built-in input hw available}

gestaltHasSoundInputDevice = 5; {sound input device available}

gestaltPlayAndRecord = 6; {built-in hw can play while recording}

gestalt16BitSoundIO = 7; {built-in hw can handle 16-bit data}

gestaltStereoInput = 8; {built-in hw can record stereo sounds}

gestaltLineLevelInput = 9; {built-in input hw needs line level}

gestaltSndPlayDoubleBuffer = 10; {play from disk routines available}

gestaltMultiChannels = 11; {multiple channels of sound supported}

gestalt16BitAudioSupport = 12; {16-bit audio data supported}

{channel initialization parameters}

initChanLeft = $0002; {left stereo channel}

initChanRight = $0003; {right stereo channel}

waveInitChannel0 = $0004; {wave-table channel 0}

waveInitChannel1 = $0005; {wave-table channel 1}

waveInitChanne12 = $0006; {wave-table channel 2}

waveInitChannel3 = $0007; {wave-table channel 3}

initMono = $0080; {monophonic channel}

initStereo = $00C0; {stereo channel}

initMACE3 = $0300; {3:1 compression}

initMACE6 = $0400; {6:1 compression}

initNoInterp = $0004; {no linear interpolation}

initNoDrop = $0008; {no drop-sample conversion}
Summary of the Sound Manager 2-157

C H A P T E R 2

Sound Manager
{masks for channel attributes}

initPanMask = $0003; {mask for right/left pan values}

initSRateMask = $0030; {mask for sample rate values}

initStereoMask = $00C0; {mask for mono/stereo values}

initCompMask = $FF00; {mask for compression IDs}

{sound data types}

squareWaveSynth = 1; {square-wave data}

waveTableSynth = 3; {wave-table data}

sampledSynth = 5; {sampled-sound data}

{sound command numbers}

nullCmd = 0; {do nothing}

quietCmd = 3; {stop a sound that is playing}

flushCmd = 4; {flush a sound channel}

reInitCmd = 5; {reinitialize a sound channel}

waitCmd = 10; {suspend processing in a channel}

pauseCmd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

callBackCmd = 13; {execute a callback procedure}

syncCmd = 14; {synchronize channels}

availableCmd = 24; {see if initialization options }

{ are supported}

versionCmd = 25; {determine version}

totalLoadCmd = 26; {report total CPU load}

loadCmd = 27; {report CPU load for a new channel}

freqDurationCmd = 40; {play a note for a duration}

restCmd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

ampCmd = 43; {change the amplitude of a sound}

timbreCmd = 44; {change the timbre of a sound}

getAmpCmd = 45; {get the amplitude of a sound}

volumeCmd = 46; {set volume}

getVolumeCmd = 47; {get volume}

waveTableCmd = 60; {install a wave table as a voice}

soundCmd = 80; {install a sampled sound as a voice}

bufferCmd = 81; {play a sampled sound}

rateCmd = 82; {set the pitch of a sampled sound}

getRateCmd = 85; {get the pitch of a sampled sound}

{sampled sound header encoding options}

stdSH = $00; {standard sound header}

extSH = $FF; {extended sound header}

cmpSH = $FE; {compressed sound header}
2-158 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
{size of data structures}

stdQLength = 128; {default size of standard sound }

{ channel}

{sound resource formats}

firstSoundFormat = $0001; {format 1 'snd ' resource}

secondSoundFormat = $0002; {format 2 'snd ' resource}

{sound command mask}

dataOffsetFlag = $8000; {sound command data offset bit}

{system beep states}

sysBeepDisable = $0000; {system alert sound disabled}

sysBeepEnable = $0001; {system alert sound enabled}

{values for the unitType field in AudioSelection}

unitTypeSeconds = $0000; {seconds}

unitTypeNoSelection = $FFFF; {no selection}

{double buffer status flags}

dbBufferReady = $00000001;{double buffer is filled}

dbLastBuffer = $00000004;{last double buffer to play}

{values for the compressionID field of CmpSoundHeader}

variableCompression = -2; {variable-ratio compression}

fixedCompression = -1; {fixed-ratio compression}

notCompressed = 0; {noncompressed samples}

threeToOne = 3; {3:1 compressed samples}

sixToOne = 4; {6:1 compressed samples}

{values for the packetSize field of CmpSoundHeader}

sixToOnePacketSize = 8; {packet size in bits for 6:1}

threeToOnePacketSize = 16; {packet size in bits for 3:1}

{compression names and types}

NoneName = 'not compressed';

ACE2to1Name = 'ACE 2-to-1';

ACE8to3Name = 'ACE 8-to-3';

MACE3to1Name = 'MACE 3-to-1';

MACE6to1Name = 'MACE 6-to-1';

NoneType = 'NONE';

ACE2Type = 'ACE2';

ACE8Type = 'ACE8';

MACE3Type = 'MAC3';

MACE6Type = 'MAC6'
Summary of the Sound Manager 2-159

C H A P T E R 2

Sound Manager
{IDs for AIFF and AIFF-C files}

AIFFID = 'AIFF'; {AIFF file}

AIFCID = 'AIFC'; {AIFF-C file}

{IDs for AIFF and AIFF-C file chunks}

FormID = 'FORM'; {ID for Form Chunk}

FormatVersionID = 'FVER'; {ID for Format Version Chunk}

CommonID = 'COMM'; {ID for Common Chunk}

SoundDataID = 'SSND'; {ID for Sound Data Chunk}

MarkerID = 'MARK'; {ID for Marker Chunk}

InstrumentID = 'INST'; {ID for Instrument Chunk}

MIDIDataID = 'MIDI'; {ID for MIDI Data Chunk}

AudioRecordingID = 'AESD'; {ID for Recording Chunk}

ApplicationSpecificID = 'APPL'; {ID for Application Chunk}

CommentID = 'COMT'; {ID for Comment Chunk}

NameID = 'NAME'; {ID for Name Chunk}

AuthorID = 'AUTH'; {ID for Author Chunk}

CopyrightID = '(c) '; {ID for Copyright Chunk}

AnnotationID = 'ANNO'; {ID for Annotation Chunk}

{version of AIFC format specification}

AIFCVersion1 = $A2805140;{date of version creation}

{MIDI note value for middle C}

kMiddleC = 60;

{ratio between frequencies of MIDI note values}

twelfthRootTwo = 1.05946309434;

{standard sampling rates}

rate44khz = $AC440000; {44100.00000 in fixed-point}

rate22khz = $56EE8BA3; {22254.54545 in fixed-point}

rate22050hz = $56220000; {22050.00000 in fixed-point}

rate11khz = $2B7745D1; {11127.27273 in fixed-point}

rate11025hz = $2B110000; {11025.00000 in fixed-point}

{constant for synth parameter of SndNewChannel}

kUseOptionalOutputDevice = -1;

{volumes}

kFullVolume = $0100;

kNoVolume = 0;
2-160 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
{development stages}

developStage = $20; {prealpha release}

alphaStage = $40; {alpha release}

betaStage = $60; {beta release}

finalStage = $80; {final release}

{sizes of data buffers}

stateBlockSize = 64; {size of state block buffer}

leftOverBlockSize = 32; {size of leftover block buffer}

Data Types 2

Unsigned Fixed-Point Numbers

TYPE

UnsignedFixed = LongInt; {unsigned fixed-point number}

Times

TYPE

Time = LongInt; {in half-milliseconds}

Sound Command Record

SndCommand =

PACKED RECORD

cmd: Integer; {command number}

param1: Integer; {first parameter}

param2: LongInt; {second parameter}

END;

Audio Selection Record

AudioSelection =

PACKED RECORD

unitType: LongInt; {type of time unit}

selStart: Fixed; {starting point of selection}

selEnd: Fixed; {ending point of selection}

END;

AudioSelectionPtr = ^AudioSelection;
Summary of the Sound Manager 2-161

C H A P T E R 2

Sound Manager
Sound Channel Status Record

SCStatus =

RECORD

scStartTime: Fixed; {starting time for play from disk}

scEndTime: Fixed; {ending time for play from disk}

scCurrentTime: Fixed; {current time for play from disk}

scChannelBusy: Boolean; {TRUE if channel is processing cmds}

scChannelDisposed: Boolean; {reserved}

scChannelPaused: Boolean; {TRUE if play from disk is paused}

scUnused: Boolean; {unused}

scChannelAttributes: LongInt; {attributes of this channel}

scCPULoad: LongInt; {CPU load for this channel}

END;

SCStatusPtr = ^SCStatus;

Sound Manager Status Record

SMStatus =

PACKED RECORD

smMaxCPULoad: Integer; {maximum load on all channels}

smNumChannels: Integer; {number of allocated channels}

smCurCPULoad: Integer; {current load on all channels}

END;

SMStatusPtr = ^SMStatus;

Sound Channel Record

SndChannel =

PACKED RECORD

nextChan: SndChannelPtr; {pointer to next channel}

firstMod: Ptr; {used internally}

callBack: ProcPtr; {pointer to callback procedure}

userInfo: LongInt; {free for application's use}

wait: LongInt; {used internally}

cmdInProgress: SndCommand; {used internally}

flags: Integer; {used internally}

qLength: Integer; {used internally}

qHead: Integer; {used internally}

qTail: Integer; {used internally}

queue: ARRAY[0..stdQLength-1] OF SndCommand;

END;

SndChannelPtr = ^SndChannel;
2-162 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Header Record

SoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

length: LongInt; {number of samples in array}

sampleRate: Fixed; {sample rate}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

SoundHeaderPtr = ^SoundHeader;

Extended Sound Header Record

ExtSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base frequency of sample}

numFrames: LongInt; {total number of frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

instrumentChunks: Ptr; {pointer to instrument info}

AESRecording: Ptr; {pointer to audio info}

sampleSize: Integer; {number of bits per sample}

futureUse1: Integer; {reserved}

futureUse2: LongInt; {reserved}

futureUse3: LongInt; {reserved}

futureUse4: LongInt; {reserved}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

ExtSoundHeaderPtr = ^ExtSoundHeader;
Summary of the Sound Manager 2-163

C H A P T E R 2

Sound Manager
Compressed Sound Header Record

CmpSoundHeader =

PACKED RECORD

samplePtr: Ptr; {if NIL, samples in sampleArea}

numChannels: LongInt; {number of channels in sample}

sampleRate: Fixed; {rate of original sample}

loopStart: LongInt; {loop point beginning}

loopEnd: LongInt; {loop point ending}

encode: Byte; {sample's encoding option}

baseFrequency: Byte; {base freq. of original sample}

numFrames: LongInt; {length of sample in frames}

AIFFSampleRate: Extended80; {rate of original sample}

markerChunk: Ptr; {reserved}

format: OSType; {data format type}

futureUse2: LongInt; {reserved}

stateVars: StateBlockPtr; {pointer to StateBlock}

leftOverSamples: LeftOverBlockPtr;

{pointer to LeftOverBlock}

compressionID: Integer; {ID of compression algorithm}

packetSize: Integer; {number of bits per packet}

snthID: Integer; {unused}

sampleSize: Integer; {bits in each sample point}

sampleArea: PACKED ARRAY[0..0] OF Byte;

END;

CmpSoundHeaderPtr = ^CmpSoundHeader;

Sound Double Buffer Header Record

SndDoubleBufferHeader =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

END;

SndDoubleBufferHeaderPtr = ^SndDoubleBufferHeader;
2-164 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SndDoubleBufferHeader2 =

PACKED RECORD

dbhNumChannels: Integer; {number of sound channels}

dbhSampleSize: Integer; {sample size, if noncompressed}

dbhCompressionID: Integer; {ID of compression algorithm}

dbhPacketSize: Integer; {number of bits per packet}

dbhSampleRate: Fixed; {sample rate}

dbhBufferPtr: ARRAY[0..1] OF SndDoubleBufferPtr;

{pointers to SndDoubleBuffer}

dbhDoubleBack: ProcPtr; {pointer to doubleback procedure}

dbhFormat: OSType; {signature of codec}

END;

SndDoubleBufferHeaderPtr2 = ^SndDoubleBufferHeader2;

Sound Double Buffer Record

SndDoubleBuffer =

PACKED RECORD

dbNumFrames: LongInt; {number of frames in buffer}

dbFlags: LongInt; {buffer status flags}

dbUserInfo: ARRAY[0..1] OF LongInt;

{for application's use}

dbSoundData: PACKED ARRAY[0..0] OF Byte;

{array of data}

END;

SndDoubleBufferPtr = ^SndDoubleBuffer;

Chunk Header

ID = LongInt; {chunk ID type}

ChunkHeader =

RECORD

ckID: ID; {chunk type ID}

ckSize: LongInt; {number of bytes of data}

END;
Summary of the Sound Manager 2-165

C H A P T E R 2

Sound Manager
Form Chunk

ContainerChunk =

RECORD

ckID: ID; {'FORM'}

ckSize: LongInt; {number of bytes of data}

formType: ID; {type of file}

END;

Format Version Chunk

FormatVersionChunk =

RECORD

ckID: ID; {'FVER'}

ckSize: LongInt; {4 bytes}

timestamp: LongInt; {date of format version}

END;

Common Chunk

CommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {18 bytes}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

END;

Extended Common Chunk

ExtCommonChunk =

RECORD

ckID: ID; {'COMM'}

ckSize: LongInt; {22 bytes + compression name}

numChannels: Integer; {number of channels}

numSampleFrames: LongInt; {number of sample frames}

sampleSize: Integer; {number of bits per sample}

sampleRate: Extended; {number of frames per second}

compressionType: ID; {compression type ID}

compressionName: PACKED ARRAY[0..0] OF Byte;

{compression type name}

END;
2-166 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Data Chunk

SoundDataChunk =

RECORD

ckID: ID; {'SSND'}

ckSize: LongInt; {size of chunk data}

offset: LongInt; {offset to sound data}

blockSize: LongInt; {size of alignment blocks}

END;

Version Record

NumVersion =

PACKED RECORD

CASE INTEGER OF

 0:

(majorRev: SignedByte; {major revision level in BCD}

minorAndBugRev: SignedByte; {minor revision level}

stage: SignedByte; {development stage}

nonRelRev: SignedByte); {nonreleased revision level}

 1:

(version: LongInt); {all 4 fields together}

END;

Leftover Block

LeftOverBlock =

RECORD

count: LongInt;

sampleArea: PACKED ARRAY[0..leftOverBlockSize - 1] OF Byte;

END;

LeftOverBlockPtr = ^LeftOverBlock;

State Block

StateBlock =

RECORD

stateVar: ARRAY[0..stateBlockSize - 1] OF Integer;

END;

StateBlockPtr = ^StateBlock;
Summary of the Sound Manager 2-167

C H A P T E R 2

Sound Manager
Sound Manager Routines 2

Playing Sound Resources

PROCEDURE SysBeep (duration: Integer);

FUNCTION SndPlay (chan: SndChannelPtr; sndHdl: Handle;
async: Boolean): OSErr;

Playing From Disk

FUNCTION SndStartFilePlay (chan: SndChannelPtr; fRefNum: Integer;
resNum: Integer; bufferSize: LongInt;
theBuffer: Ptr;
theSelection: AudioSelectionPtr;
theCompletion: ProcPtr; async: Boolean): OSErr;

FUNCTION SndPauseFilePlay (chan: SndChannelPtr): OSErr;

FUNCTION SndStopFilePlay (chan: SndChannelPtr; quietNow: Boolean): OSErr;

Allocating and Releasing Sound Channels

FUNCTION SndNewChannel (VAR chan: SndChannelPtr; synth: Integer;
init: LongInt; userRoutine: ProcPtr): OSErr;

FUNCTION SndDisposeChannel (chan: SndChannelPtr; quietNow: Boolean): OSErr;

Sending Commands to a Sound Channel

FUNCTION SndDoCommand (chan: SndChannelPtr; cmd: SndCommand;
noWait: Boolean): OSErr;

FUNCTION SndDoImmediate (chan: SndChannelPtr; cmd: SndCommand): OSErr;

Obtaining Information

FUNCTION SndSoundManagerVersion
: NumVersion;

FUNCTION MACEVersion : NumVersion;

FUNCTION SndControl (id: Integer; VAR cmd: SndCommand): OSErr;

FUNCTION SndChannelStatus (chan: SndChannelPtr; theLength: Integer;
theStatus: SCStatusPtr): OSErr;

FUNCTION SndManagerStatus (theLength: Integer; theStatus: SMStatusPtr):
OSErr;

PROCEDURE SndGetSysBeepState
(VAR sysBeepState: Integer);

FUNCTION SndSetSysBeepState
(sysBeepState: Integer): OSErr;
2-168 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
FUNCTION GetSoundHeaderOffset
(sndHdl: Handle; VAR offset: LongInt): OSErr;

Controlling Volume Levels

FUNCTION GetSysBeepVolume (VAR level: LongInt): OSErr;

FUNCTION SetSysBeepVolume (level: LongInt): OSErr;

FUNCTION GetDefaultOutputVolume
(VAR level: LongInt): OSErr;

FUNCTION SetDefaultOutputVolume
(level: LongInt): OSErr;

Compressing and Expanding Audio Data

PROCEDURE Comp3to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Comp6to1 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Exp1to3 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

PROCEDURE Exp1to6 (inBuffer: Ptr; outBuffer: Ptr; cnt: LongInt;
inState: Ptr; outState: Ptr;
numChannels: LongInt; whichChannel: LongInt);

Managing Double Buffers

FUNCTION SndPlayDoubleBuffer
(chan: SndChannelPtr;
theParams: SndDoubleBufferHeaderPtr): OSErr;

Performing Unsigned Fixed-Point Arithmetic

FUNCTION UnsignedFixMulDiv (value: UnsignedFixed;
multiplier: UnsignedFixed;
divisor: UnsignedFixed): UnsignedFixed;

Linking Modifiers to Sound Channels

FUNCTION SndAddModifier (chan: SndChannelPtr; modifier: ProcPtr;
id: Integer; init: LongInt): OSErr;
Summary of the Sound Manager 2-169

C H A P T E R 2

Sound Manager
Application-Defined Routines 2

PROCEDURE MyFilePlayCompletionRoutine
(chan: SndChannelPtr);

PROCEDURE MyCallback (chan: SndChannelPtr; cmd: SndCommand);

PROCEDURE MyDoubleBackProc (chan: SndChannelPtr;
doubleBufferPtr: SndDoubleBufferPtr);

C Summary 2

Constants 2

/*Gestalt sound attributes selector and response bits*/

#define gestaltSoundAttr 'snd ' /*sound attributes selector*/

enum {

gestaltStereoCapability = 0, /*built-in hw can play stereo sounds*/

gestaltStereoMixing = 1, /*built-in hw mixes stereo to mono*/

gestaltSoundIOMgrPresent = 3, /*sound input routines available*/

gestaltBuiltInSoundInput = 4, /*built-in input hw available*/

gestaltHasSoundInputDevice = 5, /*sound input device available*/

gestaltPlayAndRecord = 6, /*built-in hw can play while recording*/

gestalt16BitSoundIO = 7, /*built-in hw can handle 16-bit data*/

gestaltStereoInput = 8, /*built-in hw can record stereo sounds*/

gestaltLineLevelInput = 9, /*built-in input hw needs line level*/

gestaltSndPlayDoubleBuffer = 10, /*play from disk routines available*/

gestaltMultiChannels = 11, /*multiple channels of sound supported*/

gestalt16BitAudioSupport = 12 /*16-bit audio data supported*/

};

/*channel initialization parameters*/

enum {

initChanLeft = 0x0002, /*left stereo channel*/

initChanRight = 0x0003, /*right stereo channel*/

initMono = 0x0080, /*monophonic channel*/

initStereo = 0x00C0, /*stereo channel*/

initMACE3 = 0x0300, /*3:1 compression*/

initMACE6 = 0x0400, /*6:1 compression*/

initNoInterp = 0x0004, /*no linear interpolation*/

initNoDrop = 0x0008 /*no drop-sample conversion*/

};
2-170 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
/*wave channel initialization parameters*/

enum {

waveInitChannel0 = 0x04, /*wave-table channel 0*/

waveInitChannel1 = 0x05, /*wave-table channel 1*/

waveInitChannel2 = 0x06, /*wave-table channel 2*/

waveInitChannel3 = 0x07, /*wave-table channel 3*/

waveInitChannelMask = 0x07 /*mask for wave-table parameters*/

};

/*masks for channel attributes*/

enum {

initPanMask = 0x0003, /*mask for left/right pan values*/

initSRateMask = 0x0030, /*mask for sample rate values*/

initStereoMask = 0x00C0, /*mask for mono/stereo values*/

initCompMask = 0xFF00 /*mask for compression IDs*/

};

/*sound data types*/

enum {

squareWaveSynth = 1, /*square-wave data*/

waveTableSynth = 3, /*wave-table data*/

sampledSynth = 5 /*sampled-sound data*/

};

/*sound command numbers*/

enum {

nullCmd = 0, /*do nothing*/

quietCmd = 3, /*stop a sound that is playing*/

flushCmd = 4, /*flush a sound channel*/

reInitCmd = 5, /*reinitialize a sound channel*/

waitCmd = 10, /*suspend processing in a channel*/

pauseCmd = 11, /*pause processing in a channel*/

resumeCmd = 12, /*resume processing in a channel*/

callBackCmd = 13, /*execute a callback procedure*/

syncCmd = 14, /*synchronize channels*/

availableCmd = 24, /*see if initialization options */

/* are supported*/

versionCmd = 25, /*determine version*/

totalLoadCmd = 26, /*report total CPU load*/

loadCmd = 27, /*report CPU load for a new channel*/

freqDurationCmd = 40, /*play a note for a duration*/

restCmd = 41, /*rest a channel for a duration*/

freqCmd = 42, /*change the pitch of a sound*/

ampCmd = 43, /*change the amplitude of a sound*/
Summary of the Sound Manager 2-171

C H A P T E R 2

Sound Manager
timbreCmd = 44, /*change the timbre of a sound*/

getAmpCmd = 45, /*get the amplitude of a sound*/

volumeCmd = 46, /*set volume*/

getVolumeCmd = 47, /*get volume*/

waveTableCmd = 60, /*install a wave table as a voice*/

soundCmd = 80, /*install a sampled sound as a voice*/

bufferCmd = 81, /*play a sampled sound*/

rateCmd = 82, /*set the pitch of a sampled sound*/

getRateCmd = 85 /*get the pitch of a sampled sound*/

};

/*sampled sound header encoding options*/

enum {

stdSH = 0x00, /*standard sound header*/

extSH = 0xFF, /*extended sound header*/

cmpSH = 0xFE /*compressed sound header*/

};

/*size of data structures*/

enum {

stdQLength = 128 /*default size of sound channel*/

};

/*sound resource formats*/

enum {

firstSoundFormat = 0x0001, /*format 1 'snd ' resource*/

secondSoundFormat = 0x0002 /*format 2 'snd ' resource*/

};

/*sound command mask*/

enum {

dataOffsetFlag = 0x8000 /*sound command data offset bit*/

};

/*system beep states*/

enum {

sysBeepDisable = 0x0000, /*system alert sound disabled*/

sysBeepEnable = 0x0001 /*system alert sound enabled*/

};

/*values for the unitType field in AudioSelection*/

enum {

unitTypeSeconds = 0x0000, /*seconds*/

unitTypeNoSelection = 0xFFFF /*no selection*/

};
2-172 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
/*double buffer status flags*/

enum {

dbBufferReady = 0x00000001, /*double buffer is filled*/

dbLastBuffer = 0x00000004 /*last double buffer to play*/

};

/*values for the compressionID field of CmpSoundHeader*/

enum {

variableCompression = -2, /*variable-ratio compression*/

fixedCompression = -1, /*fixed-ratio compression*/

notCompressed = 0, /*noncompressed samples*/

threeToOne = 3, /*3:1 compressed samples*/

sixToOne = 4 /*6:1 compressed samples*/

};

/*values for the packetSize field of CmpSoundHeader*/

enum {

sixToOnePacketSize = 8, /*packet size in bits for 6:1*/

threeToOnePacketSize = 16 /*packet size in bits for 3:1*/

};

/*compression names and types*/

#define NoneName "\pnot compressed"

#define ACE2to1Name "\pACE 2-to-1"

#define ACE8to3Name "\pACE 8-to-3"

#define MACE3to1Name "\pMACE 3-to-1"

#define MACE6to1Name "\pMACE 6-to-1"

#define NoneType 'NONE'

#define ACE2Type 'ACE2'

#define ACE8Type 'ACE8'

#define MACE3Type 'MAC3'

#define MACE6Type 'MAC6'

/*IDs for AIFF and AIFF-C files*/

#define AIFFID 'AIFF' /*AIFF file*/

#define AIFCID 'AIFC' /*AIFF-C file*/

/*IDs for AIFF and AIFF-C file chunks*/

#define FORMID 'FORM' /*ID for Form Chunk*/

#define FormatVersionID 'FVER' /*ID for Format Version Chunk*/

#define CommonID 'COMM' /*ID for Common Chunk*/

#define SoundDataID 'SSND' /*ID for Sound Data Chunk*/

#define MarkerID 'MARK' /*ID for Marker Chunk*/

#define InstrumentID 'INST' /*ID for Instrument Chunk*/
Summary of the Sound Manager 2-173

C H A P T E R 2

Sound Manager
#define MIDIDataID 'MIDI' /*ID for MIDI Data Chunk*/

#define AudioRecordingID 'AESD' /*ID for Recording Chunk*/

#define ApplicationSpecificID 'APPL' /*ID for Application Chunk*/

#define CommentID 'COMT' /*ID for Comment Chunk*/

#define NameID 'NAME' /*ID for Name Chunk*/

#define AuthorID 'AUTH' /*ID for Author Chunk*/

#define CopyrightID '(c) ' /*ID for Copyright Chunk*/

#define AnnotationID 'ANNO' /*ID for Annotation Chunk*/

/*version of AIFC format specification*/

#define AIFCVersion1 0xA2805140

/*date of version creation*/

/*MIDI note value for middle C*/

enum {

kMiddleC = 60

};

/*ratio between frequencies of MIDI note values*/

#define twelfthRootTwo 1.05946309434

/*standard sampling rates*/

#define rate44khz 0xAC440000 /*44100.00000 in fixed-point*/

#define rate22khz 0x56EE8BA3 /*22254.54545 in fixed-point*/

#define rate22050hz 0x56220000 /*22050.00000 in fixed-point*/

#define rate11khz 0x2B7745D1 /*11127.27273 in fixed-point*/

#define rate11025hz 0x2B110000 /*11025.00000 in fixed-point*/

/*constant for synth parameter of SndNewChannel*/

enum {

kUseOptionalOutputDevice = -1

};

/*volumes*/

enum {

kFullVolume = 0x0100,

kNoVolume = 0

};

/*development stages*/

enum {

developStage = 0x20, /*prealpha release*/

alphaStage = 0x40, /*alpha release*/
2-174 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
betaStage = 0x60, /*beta release*/

finalStage = 0x80 /*final release*/

};

/*sizes of data buffers*/

enum {

stateBlockSize = 64, /*size of state block buffer*/

leftOverBlockSize = 32 /*size of leftover block buffer*/

};

Data Types 2

Unsigned Fixed-Point Numbers

typedef unsigned long UnsignedFixed; /*unsigned fixed-point number*/

Times

typedef long Time; /*in half-milliseconds*/

Sound Command Record

struct SndCommand {

unsigned short cmd; /*command number*/

short param1; /*first parameter*/

long param2; /*second parameter*/

};

typedef struct SndCommand SndCommand;

Audio Selection Record

struct AudioSelection {

long unitType; /*type of time unit*/

Fixed selStart; /*starting point of selection*/

Fixed selEnd; /*ending point of selection/*

};

typedef struct AudioSelection AudioSelection;

typedef AudioSelection *AudioSelectionPtr;
Summary of the Sound Manager 2-175

C H A P T E R 2

Sound Manager
Sound Channel Status Record

struct SCStatus {

Fixed scStartTime; /*starting time for play from disk*/

Fixed scEndTime; /*ending time for play from disk*/

Fixed scCurrentTime; /*current time for play from disk*/

Boolean scChannelBusy; /*TRUE if channel is processing cmds*/

Boolean scChannelDisposed;

/*reserved*/

Boolean scChannelPaused;

/*TRUE if play from disk is paused*/

Boolean scUnused; /*unused*/

unsigned long scChannelAttributes;

/*attributes of this channel*/

long scCPULoad; /*CPU load for this channel*/

};

typedef struct SCStatus SCStatus;

typedef SCStatus *SCStatusPtr;

Sound Manager Status Record

struct SMStatus {

short smMaxCPULoad; /*maximum load on all channels*/

short smNumChannels; /*number of allocated channels*/

short smCurCPULoad; /*current load on all channels*/

};

typedef struct SMStatus SMStatus;

typedef SMStatus *SMStatusPtr;

Sound Channel Record

struct SndChannel {

struct SndChannel *nextChan; /*pointer to next channel*/

Ptr firstMod; /*used internally*/

SndCallBackProcPtr callBack; /*pointer to callback procedure*/

long userInfo; /*free for application's use*/

long wait; /*used internally*/

SndCommand cmdInProgress; /*used internally*/

short flags; /*used internally*/

short qLength; /*used internally*/

short qHead; /*used internally*/

short qTail; /*used internally*/

SndCommand queue[stdQLength];
2-176 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
};

typedef struct SndChannel SndChannel;

typedef SndChannel *SndChannelPtr;

Sound Header Record

struct SoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long length; /*number of samples in array*/

Fixed sampleRate; /*sample rate for this sound*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of sample*/

unsigned char sampleArea[1];

};

typedef struct SoundHeader SoundHeader;

typedef SoundHeader *SoundHeaderPtr;

Extended Sound Header Record

struct ExtSoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long numChannels; /*number of channels in sample*/

Fixed sampleRate; /*rate of original sample*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of sample*/

unsigned long numFrames; /*total number of frames*/

extended80 AIFFSampleRate;/*rate of original sample*/

Ptr markerChunk; /*reserved*/

Ptr instrumentChunks;

/*pointer to instrument info*/

Ptr AESRecording; /*pointer to audio info*/

unsigned short sampleSize; /*number of bits per sample*/

unsigned short futureUse1; /*reserved*/

unsigned long futureUse2; /*reserved*/

unsigned long futureUse3; /*reserved*/

unsigned long futureUse4; /*reserved*/

unsigned char sampleArea[1];

};

typedef struct ExtSoundHeader ExtSoundHeader;

typedef ExtSoundHeader *ExtSoundHeaderPtr;
Summary of the Sound Manager 2-177

C H A P T E R 2

Sound Manager
Compressed Sound Header Record

struct CmpSoundHeader {

Ptr samplePtr; /*if NIL, samples in sampleArea*/

unsigned long numChannels; /*number of channels in sample*/

Fixed sampleRate; /*rate of original sample*/

unsigned long loopStart; /*loop point beginning*/

unsigned long loopEnd; /*loop point ending*/

unsigned char encode; /*sample's encoding option*/

unsigned char baseFrequency; /*base frequency of original sample*/

unsigned long numFrames; /*length of sample in frames*/

extended80 AIFFSampleRate;/*rate of original sample*/

Ptr markerChunk; /*reserved*/

OSType format; /*data format type*/

unsigned long futureUse2; /*reserved*/

StateBlockPtr stateVars; /*pointer to StateBlock*/

LeftOverBlockPtr leftOverSamples;

/*pointer to LeftOverBlock*/

unsigned short compressionID; /*ID of compression algorithm*/

unsigned short packetSize; /*number of bits per packet*/

unsigned short snthID; /*unused*/

unsigned short sampleSize; /*bits in each sample point*/

unsigned char sampleArea[1];

};

typedef struct CmpSoundHeader CmpSoundHeader;

typedef CmpSoundHeader *CmpSoundHeaderPtr;

Sound Double Buffer Header Record

struct SndDoubleBufferHeader {

short dbhNumChannels;/*number of sound channels*/

short dbhSampleSize; /*sample size, if noncompressed*/

short dbhCompressionID;

/*ID of compression algorithm*/

short dbhPacketSize; /*number of bits per packet*/

Fixed dbhSampleRate; /*sample rate*/

SndDoubleBufferPtr dbhBufferPtr[2];

/*pointers to SndDoubleBuffer*/

SndDoubleBackProcPtr dbhDoubleBack; /*pointer to doubleback procedure*/

};

typedef struct SndDoubleBufferHeader SndDoubleBufferHeader;

typedef SndDoubleBufferHeader *SndDoubleBufferHeaderPtr;
2-178 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
struct SndDoubleBufferHeader2 {

short dbhNumChannels;/*number of sound channels*/

short dbhSampleSize; /*sample size, if noncompressed*/

short dbhCompressionID;

/*ID of compression algorithm*/

short dbhPacketSize; /*number of bits per packet*/

Fixed dbhSampleRate; /*sample rate*/

SndDoubleBufferPtr dbhBufferPtr[2];

/*pointers to SndDoubleBuffer*/

SndDoubleBackProcPtr dbhDoubleBack; /*pointer to doubleback procedure*/

OSType dbhFormat; /*signature of codec*/

};

typedef struct SndDoubleBufferHeader2 SndDoubleBufferHeader2;

typedef SndDoubleBufferHeader2 *SndDoubleBufferHeaderPtr2;

Sound Double Buffer Record

struct SndDoubleBuffer {

long dbNumFrames; /*number of frames in buffer*/

long dbFlags; /*buffer status flags*/

long dbUserInfo[2]; /*for application's use*/

char dbSoundData[1];/*array of data*/

};

typedef struct SndDoubleBuffer SndDoubleBuffer;

typedef SndDoubleBuffer *SndDoubleBufferPtr;

Chunk Headers

typedef unsigned long ID; /*chunk ID type*/

struct ChunkHeader {

ID ckID; /*chunk type ID*/

long ckSize; /*number of bytes of data*/

};

typedef struct ChunkHeader ChunkHeader;

Form Chunk

struct ContainerChunk {

ID ckID; /*'FORM'*/

long ckSize; /*number of bytes of data*/

ID formType; /*type of file*/

};

typedef struct ContainerChunk ContainerChunk;
Summary of the Sound Manager 2-179

C H A P T E R 2

Sound Manager
Format Version Chunk

struct FormatVersionChunk {

ID ckID; /*'FVER'*/

long ckSize; /*4 bytes*/

unsigned long timestamp; /*date of format version*/

};

typedef struct FormatVersionChunk FormatVersionChunk;

Common Chunk

struct CommonChunk {

ID ckID; /*'COMM'*/

long ckSize; /*18 bytes*/

short numChannels; /*number of channels*/

unsigned long numSampleFrames;

/*number of sample frames*/

short sampleSize; /*number of bits per sample*/

extended80 sampleRate; /*number of frames per second*/

};

typedef struct CommonChunk CommonChunk;

Extended Common Chunk

struct ExtCommonChunk {

ID ckID; /*'COMM'*/

long ckSize; /*22 bytes + compression name*/

short numChannels; /*number of channels*/

unsigned long numSampleFrames;

/*number of sample frames*/

short sampleSize; /*number of bits per sample*/

extended80 sampleRate; /*number of frames per second*/

ID compressionType;

/*compression type ID*/

char compressionName[1];

/*compression type name*/

};

typedef struct ExtCommonChunk ExtCommonChunk;
2-180 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
Sound Data Chunk

struct SoundDataChunk {

ID ckID; /*'SSND'*/

long ckSize; /*size of chunk data*/

unsigned long offset; /*offset to sound data*/

unsigned long blockSize; /*size of alignment blocks*/

};

typedef struct SoundDataChunk SoundDataChunk;

Version Record

struct NumVersion {

unsigned char majorRev; /*major revision level in BCD*/

unsigned char minorAndBugRev;/*minor revision level*/

unsigned char stage; /*development stage*/

unsigned char nonRelRev; /*nonreleased version revision level*/

};

typedef struct NumVersion NumVersion;

Leftover Block

struct LeftOverBlock {

unsigned long count;

char sampleArea[leftOverBlockSize];

};

typedef struct LeftOverBlock LeftOverBlock;

typedef LeftOverBlock *LeftOverBlockPtr;

State Block

struct StateBlock {

short stateVar[stateBlockSize];

};

typedef struct StateBlock StateBlock;

typedef StateBlock *StateBlockPtr;

Procedure Types

typedef pascal void (*FilePlayCompletionProcPtr)
(SndChannelPtr chan);

typedef pascal void (*SndCallBackProcPtr)
(SndChannelPtr chan, SndCommand *cmd);
Summary of the Sound Manager 2-181

C H A P T E R 2

Sound Manager
typedef pascal void (*SndDoubleBackProcPtr)
(SndChannelPtr chan,
SndDoubleBufferPtr doubleBufferPtr);

Sound Manager Routines 2

Playing Sound Resources

pascal void SysBeep (short duration);

pascal OSErr SndPlay (SndChannelPtr chan, Handle sndHdl,
Boolean async);

Playing From Disk

pascal OSErr SndStartFilePlay
(SndChannelPtr chan, short fRefNum,
short resNum, long bufferSize, void *theBuffer,
AudioSelectionPtr theSelection,
FilePlayCompletionProcPtr theCompletion,
Boolean async);

pascal OSErr SndPauseFilePlay
(SndChannelPtr chan);

pascal OSErr SndStopFilePlay
(SndChannelPtr chan, Boolean quietNow);

Allocating and Releasing Sound Channels

pascal OSErr SndNewChannel (SndChannelPtr *chan, short synth, long init,
SndCallBackProcPtr userRoutine);

pascal OSErr SndDisposeChannel
(SndChannelPtr chan, Boolean quietNow);

Sending Commands to a Sound Channel

pascal OSErr SndDoCommand (SndChannelPtr chan, const SndCommand *cmd,
Boolean noWait);

pascal OSErr SndDoImmediate
(SndChannelPtr chan, const SndCommand *cmd);

Obtaining Information

pascal NumVersion SndSoundManagerVersion
(void);

pascal NumVersion MACEVersion
(void);
2-182 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
pascal OSErr SndControl (short id, SndCommand *cmd);

pascal OSErr SndChannelStatus
(SndChannelPtr chan, short theLength,
SCStatusPtr theStatus);

pascal OSErr SndManagerStatus
(short theLength, SMStatusPtr theStatus);

pascal void SndGetSysBeepState
(short *sysBeepState);

pascal OSErr SndSetSysBeepState
(short sysBeepState);

pascal OSErr GetSoundHeaderOffset
(Handle sndHandle, long *offset);

Controlling Volume Levels

pascal OSErr GetSysBeepVolume
(long *level);

pascal OSErr SetSysBeepVolume
(long level);

pascal OSErr GetDefaultOutputVolume
(long *level);

pascal OSErr SetDefaultOutputVolume
(long level);

Compressing and Expanding Audio Data

pascal void Comp3to1 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Comp6to1 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Exp1to3 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);

pascal void Exp1to6 (const void *inBuffer, void *outBuffer,
unsigned long cnt, const void *inState,
void *outState, unsigned long numChannels,
unsigned long whichChannel);
Summary of the Sound Manager 2-183

C H A P T E R 2

Sound Manager
Managing Double Buffers

pascal OSErr SndPlayDoubleBuffer
(SndChannelPtr chan,
SndDoubleBufferHeaderPtr theParams);

Performing Unsigned Fixed-Point Arithmetic

pascal UnsignedFixed UnsignedFixMulDiv
(UnsignedFixed value, UnsignedFixed multiplier,
UnsignedFixed divisor);

Linking Modifiers to Sound Channels

pascal OSErr SndAddModifier
(SndChannelPtr chan, Ptr modifier, short id,
long init);

Application-Defined Routines 2

pascal void MyFilePlayCompletionRoutine
(SndChannelPtr chan);

pascal void MyCallback (SndChannelPtr chan, SndCommand *cmd);

pascal void MyDoubleBackProc
(SndChannelPtr chan,
SndDoubleBufferPtr doubleBufferPtr);

Assembly-Language Summary 2

Data Structures 2

SndCommand Data Structure

AudioSelection Data Structure

0 cmd word command number
2 param1 word first parameter
4 param2 long second parameter

0 unitType long type of time unit
4 selStart 4 bytes starting point of selection (Fixed)
8 selEnd 4 bytes ending point of selection (Fixed)
2-184 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SCStatus Data Structure

SMStatus Data Structure

SndChannel Data Structure

SoundHeader Data Structure

ExtSoundHeader Data Structure

0 scStartTime 4 bytes starting time for play from disk (Fixed)
4 scEndTime 4 bytes ending time for play from disk (Fixed)
8 scCurrentTime 4 bytes current time for play from disk (Fixed)

12 scChannelBusy byte channel playing sampled sound flag
13 scChannelDisposed byte reserved
14 scChannelPaused byte play from disk is paused flag
15 scUnused byte unused
16 scChannelAttributes long attributes of channel
20 scCPULoad long CPU load for channel

0 smMaxCPULoad word maximum load on all channels
2 smNumChannels word number of allocated channels
4 smCurCPULoad word current load on all channels

0 nextChan long pointer to next channel
4 firstMod long used internally
8 callBack long pointer to callback procedure

12 userInfo long free for application’s use
16 wait long used internally
20 cmdInProgress 8 bytes used internally
28 flags word used internally
30 qLength word used internally
32 qHead word used internally
34 qTail word used internally
36 queue variable queue of sound commands

0 samplePtr long pointer to samples (or NIL if samples follow data structure)
4 length long number of samples in array
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending
20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of sample
22 sampleArea variable sampled-sound data

0 samplePtr long pointer to samples (or NIL if samples follow data
structure)

4 numChannels long number of channels in sample
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending
Summary of the Sound Manager 2-185

C H A P T E R 2

Sound Manager
CmpSoundHeader Data Structure

SndDoubleBufferHeader Data Structure

20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of sample
22 numFrames long total number of frames
26 AIFFSampleRate 10 bytes rate of original sample (Extended80)
36 markerChunk long reserved
40 instrumentChunks long pointer to instrument info
44 AESRecording long pointer to audio info
48 sampleSize word number of bits per sample
50 futureUse1 word reserved
52 futureUse2 long reserved
56 futureUse3 long reserved
60 futureUse4 long reserved
64 sampleArea variable sampled-sound data

0 samplePtr long pointer to samples (or NIL if samples follow data
structure)

4 numChannels long number of channels in sample
8 sampleRate 4 bytes sample rate (Fixed)

12 loopStart long loop point beginning
16 loopEnd long loop point ending
20 encode byte sample’s encoding option
21 baseFrequency byte base frequency of original sample
22 numFrames long length of sample in frames
26 AIFFSampleRate 10 bytes rate of original sample (Extended80)
36 markerChunk long reserved
40 format OSType data format type
44 futureUse2 long reserved
48 stateVars long pointer to StateBlock
52 leftOverSamples long pointer to LeftOverBlock
56 compressionID word ID of compression algorithm
58 packetSize word number of bits per packet
60 snthID word unused
62 sampleSize word bits in each sample point
64 sampleArea variable compressed sound data

0 dbhNumChannels word number of sound channels
2 dbhSampleSize word sample size, if noncompressed
4 dbhCompressionID word ID of compression algorithm
6 dbhPacketSize word number of bits per packet
8 dbhSampleRate 4 bytes sample rate (Fixed)

12 dbhBufferPtr 2 longs pointers to SndDoubleBuffer data structures
20 dbhDoubleBack long pointer to doubleback procedure
2-186 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
SndDoubleBuffer Data Structure

ChunkHeader Data Structure

ContainerChunk Data Structure

FormatVersionChunk Data Structure

CommonChunk Data Structure

ExtCommonChunk Data Structure

SoundDataChunk

0 dbNumFrames long number of frames in buffer
4 dbFlags long buffer status flags
8 dbUserInfo 2 longs for application’s use

16 dbSoundData variable array of data

0 ckID long chunk type ID
4 ckSize long number of bytes of data

0 ckID long chunk type ID ('FORM')
4 ckSize long number of bytes of data
8 formType long type of file

0 ckID long chunk type ID ('FVER')
4 ckSize long number of bytes of data (4)
8 timestamp long date of format version

0 ckID long chunk type ID ('COMM')
4 ckSize long number of bytes of data (18)
8 numChannels word number of channels

10 numSampleFrames long number of sample frames
14 sampleSize word number of bits per sample
16 sampleRate 10 bytes number of frames per second (Extended80)

0 ckID long chunk type ID ('COMM')
4 ckSize long number of bytes of data (22 + length of compression

name)
8 numChannels word number of channels

10 numSampleFrames long number of sample frames
14 sampleSize word number of bits per sample
16 sampleRate 10 bytes number of frames per second (Extended80)
26 compressionType long compression type ID
30 compressionName variable compression type name

0 ckID long chunk type ID ('SSND')
4 ckSize long number of bytes of data
8 offset long offset to sound data

12 blockSize long size of alignment blocks
Summary of the Sound Manager 2-187

C H A P T E R 2

Sound Manager
Trap Macros 2

Trap Macro Requiring Routine Selectors

_SoundDispatch

Result Codes 2

Selector Routine

$00000010 MACEVersion

$00040010 Comp3to1

$00080010 Exp1to3

$000C0008 SndSoundManagerVersion

$000C0010 Comp6to1

$00100008 SndChannelStatus

$00100010 Exp1to6

$00140008 SndManagerStatus

$00180008 SndGetSysBeepState

$001C0008 SndSetSysBeepState

$00200008 SndPlayDoubleBuffer

$02040008 SndPauseFilePlay

$02240024 GetSysBeepVolume

$02280024 SetSysBeepVolume

$022C0024 GetDefaultOutputVolume

$02300024 SetDefaultOutputVolume

$03080008 SndStopFilePlay

$0D000008 SndStartFilePlay

$04040024 GetSoundHeaderOffset

noErr 0 No error
paramErr –50 A parameter is incorrect
noHardwareErr –200 Required sound hardware not available
notEnoughHardwareErr –201 Insufficient hardware available
queueFull –203 No room in the queue
resProblem –204 Problem loading the resource
badChannel –205 Channel is corrupt or unusable
badFormat –206 Resource is corrupt or unusable
notEnoughBufferSpace –207 Insufficient memory available
badFileFormat –208 File is corrupt or unusable, or not AIFF or AIFF-C
channelBusy –209 Channel is busy
buffersTooSmall –210 Buffer is too small
2-188 Summary of the Sound Manager

C H A P T E R 2

Sound Manager

2
S

ound M
anager
channelNotBusy –211 Channel not currently used
noMoreRealTime –212 Not enough CPU time available
siInvalidCompression –223 Invalid compression type
Summary of the Sound Manager 2-189

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	Sound Manager
	About the Sound Manager
	Sound Data
	Square-Wave Data
	Wave-Table Data
	Sampled-Sound Data

	Sound Commands
	Sound Channels
	Sound Compression and Expansion

	Using the Sound Manager
	Managing Sound Channels
	Allocating Sound Channels
	Initializing Sound Channels
	Releasing Sound Channels
	Manipulating a Sound That Is Playing
	Stopping Sound Channels
	Pausing and Restarting Sound Channels
	Synchronizing Sound Channels

	Managing Sound Volumes
	Obtaining Sound-Related Information
	Obtaining Information About Available Sound Featur...
	Obtaining Version Information
	Testing for Multichannel Sound and Play-From-Disk ...
	Obtaining Information About a Single Sound Channel...
	Obtaining Information About All Sound Channels
	Determining and Changing the Status of the System ...

	Playing Notes
	Installing Voices Into Channels
	Looping a Sound Indefinitely

	Playing Sounds Asynchronously
	Using Callback Procedures
	Synchronizing Sound With Other Actions
	Managing an Asynchronous Play From Disk
	Playing Selections
	Managing Multiple Sound Channels

	Parsing Sound Resources and Sound Files
	Obtaining a Pointer to a Sound Header
	Playing Sounds Using Low-Level Routines
	Finding a Chunk in a Sound File

	Compressing and Expanding Sounds
	Using Double Buffers
	Setting Up Double Buffers
	Writing a Doubleback Procedure

	Sound Storage Formats
	Sound Resources
	The Format 1 Sound Resource
	The Format 2 Sound Resource

	Sound Files
	Chunk Organization and Data Types
	The Form Chunk
	The Format Version Chunk
	The Common Chunk
	The Sound Data Chunk
	Format of Entire Sound Files

	Sound Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Channel Initialization Parameters
	Sound Command Numbers
	Chunk IDs

	Data Structures
	Sound Command Records
	Audio Selection Records
	Sound Channel Status Records
	Sound Manager Status Records
	Sound Channel Records
	Sound Header Records
	Extended Sound Header Records
	Compressed Sound Header Records
	Sound Double Buffer Header Records
	Sound Double Buffer Records
	Chunk Headers
	Form Chunks
	Format Version Chunks
	Common Chunks
	Extended Common Chunks
	Sound Data Chunks
	Version Records
	Leftover Blocks
	State Blocks

	Sound Manager Routines
	Playing Sound Resources
	Playing From Disk
	Allocating and Releasing Sound Channels
	Sending Commands to a Sound Channel
	Obtaining Information
	Controlling Volume Levels
	Compressing and Expanding Audio Data
	Managing Double Buffers
	Performing Unsigned Fixed-Point Arithmetic
	Linking Modifiers to Sound Channels

	Application-Defined Routines
	Completion Routines
	Callback Procedures
	Doubleback Procedures

	Resources
	The Sound Resource

	Summary of the Sound Manager
	Pascal Summary
	Constants
	Data Types
	Sound Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Sound Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

