CHAPTER 2

Sound Manager

This chapter describes the Sound Manager, the part of the Macintosh system software
that controls the production and manipulation of sounds on Macintosh computers. You
can use the Sound Manager to create a wide variety of sounds and to manipulate sounds
in many ways. The Sound Manager is also used by other parts of the Macintosh system
software that produce sounds, such as the Speech Manager and QuickTime.

To use this chapter, you should already be familiar with the information in the chapter
“Introduction to Sound on the Macintosh” earlier in this book, especially with the
portions of that chapter that describe the Macintosh sound architecture and the routines
related to sound output. That chapter shows how your application can play a sound
resource or a sound file synchronously (that is, with other processing suspended while
the sound plays).

You should read this chapter if you need a greater degree of control over sound output
than the routines described in that introductory chapter provide. For example, if you
want to play sounds asynchronously or to exercise very fine control over the process of
sound production, this chapter contains information you need.

This chapter begins by describing the capabilities of the Sound Manager and the role of
sound commands and sound channels in producing sound. Then it explains how you
can use the Sound Manager to

» create and manage sound channels

» obtain information about available sound features and sound channels
» play notes and other sounds at various frequencies and volumes

» play one or more sounds asynchronously

» parse sound resources and sound files to obtain information about them
= compress and expand sound data

» use double buffers to bypass the normal play-from-disk routines

You're not likely to use all of these capabilities in a single application. In general, you
should read the section “About the Sound Manager” and then turn to the parts of the
section “Using the Sound Manager” that describe the features you want to use in your
application. The section “Sound Storage Formats” beginning on page 2-73 explains in
detail the format of sound resources and sound files. You can find a complete reference
to the Sound Manager data structures and routines in the section “Sound Manager
Reference” beginning on page 2-89.

IMPORTANT

This chapter describes the capabilities and programming interfaces of
version 3.0 of the Sound Manager. See the chapter “Introduction to
Sound on the Macintosh” for some information on how version 3.0
differs from earlier versions. The capabilities and performance of
version 3.0 are significantly better than those of all previous Sound
Manager versions, even though their programming interfaces are largely
identical. This chapter occasionally warns you about techniques or
routines that cannot be used in versions prior to 3.0, but it does not
provide an exhaustive comparison of all available versions. a

2-5

Jabeuel\ punos n

CHAPTER 2

Sound Manager

About the Sound Manager

The Sound Manager is a collection of routines that your application can use to create
sound without a knowledge of or dependence on the actual sound-producing hardware
available on any particular Macintosh computer. More generally, the Sound Manager is
responsible for managing all sound production on Macintosh computers. Other parts of
the Macintosh system software that need to create or modify sounds use the Sound
Manager to do so. Figure 2-1 shows the position of the Sound Manager in relation to
sound-producing applications and to other parts of the system software, such as the
Speech Manager and QuickTime.

Figure 2-1 The position of the Sound Manager

Text-to-speech
Movie Player Application

i

Speech
Manager

Sound-producing
Application

Sound Manager <

J

Sound components

]
)

Audio
hardware

QuickTime

Sound Input
Manager

Il

The Sound Manager was first introduced in system software version 6.0 and has been
significantly enhanced since that time. Prior to system software version 6.0, applications
could create sounds using the Sound Driver.

2-6 About the Sound Manager

CHAPTER 2

Sound Manager

IMPORTANT

To ensure compatibility across all models of Macintosh computers, you
should always use the Sound Manager rather than the Sound Driver,
which is no longer documented or supported by Apple Computer, Inc.
The Sound Manager is simpler and much more powerful than the
Sound Driver. Moreover, Sound Driver code might not work on some
Macintosh computers. a

This section describes the three basic ways of defining sounds, namely using wave-table
data, square-wave data, or sampled-sound data. Usually, you'll use sampled data to
define the sounds you want to create, because sampled data provides the greatest
flexibility and variety of sounds. You might use wave-table or square-wave data for very
simple sounds. For instance, the Simple Beep alert sound is defined using square-wave
data. Most other alert sounds are defined using sampled-sound data.

This section also describes sound commands and sound channels, which you need to
know about to be able to do anything more complex than play sound resources or files
synchronously using high-level Sound Manager routines.

Sound Data

The Sound Manager can play sounds defined using one of three kinds of sound data:

= square-wave data
= wave-table data
» sampled-sound data

This section provides a brief description of each of these kinds of audio data and
introduces some of the concepts that are used in the remainder of this chapter. A
complete description of the nature and format of audio data is beyond the scope of this
book. There are, however, numerous books available that provide complete discussions
of digital audio data.

Square-Wave Data

Square-wave data is the simplest kind of audio data supported by the Sound Manager.
You can use square-wave data to generate a sound based on a square wave. Your
application can use square-wave data to play a simple sequence of sounds in which each
sound is described completely by three factors: its frequency or pitch, its amplitude (or
volume), and its duration.

The frequency of a sound is the number of cycles per second (or hertz) of the sound
wave. Usually, you specify a sound’s frequency by a MIDI value. MIDI note values
correspond to frequencies for musical notes, such as middle C, which is defined to have
a MIDI value of 60, which on Macintosh computers is equivalent to 261.625 hertz.

Pitch is a lister’s subjective interpretation of the sound’s frequency. The terms frequency
and pitch are used interchangeably in this chapter.

A sound’s duration is the length of time a sound takes to play. In the Sound Manager,
durations are usually specified in half-milliseconds.

About the Sound Manager 2-7

Jabeuel\ punos n

2-8

CHAPTER 2

Sound Manager

The amplitude of a sound is the loudness at which it is being played. Two sounds
played at the same amplitude might not necessarily sound equally loud. For example,
one sound could be played at a lower volume (which the user may set with the Sound
control panel). Or, a sampled sound of a fleeting whisper might sound softer than a
sampled sound of continuous gunfire, even if your application plays them at the
same amplitude.

Note

Amplitude is traditionally considered to be the height of a sound wave,
so that two sounds with the same amplitude would always sound
equally loud. However, the Sound Manager considers amplitude to be
the adjustment to be made to an existing sound wave. A sound played
at maximum amplitude still might sound soft if the wave amplitude
issmall. O

A sound’s timbre is its clarity. A sound with a low timbre is very clear; a sound with a
high timbre is buzzing. Only sounds defined using square-wave data have timbres.

Wave-Table Data

To produce more complex sounds than are possible using square-wave data, your
applications can use wave-table data. As the name indicates, wave-table data is based on
a description of a single wave cycle. This cycle is called a wave table and is represented
as an array of bytes that describe the timbre (or tone) of a sound at any point in the cycle.

Your application can use any number of bytes to represent the wave, but 512 is the
recommended number because the Sound Manager resizes a wave table to 512 bytes if
the table is not exactly that long. Your application can compute the wave table at run
time or load it from a resource.

A wave table is a sequence of wave amplitudes measured at fixed intervals. For instance,
a sine wave can be converted into a wave table by taking the value of the wave’s
amplitude at every '/si2 interval of the wave (see Figure 2-2).

A wave table is represented as a packed array of bytes. Each byte contains a value in the
range $00-$FF. These values are interpreted as offset values, where $80 represents an
amplitude of 0. The largest negative amplitude is $00 and the largest positive amplitude
is $FF. When playing a wave-table description of a sound, the Sound Manager loops
through the wave table for the duration of the sound.

About the Sound Manager

CHAPTER 2

Sound Manager

Figure 2-2 A graph of a wave table

Single wave cycle

$FF

Amplitude

$80 F——— - — |- mmmm

$00
512

Packed array of bytes

Sampled-Sound Data

You can use sampled-sound data to play back sounds that have been digitally recorded
(that is, sampled sounds) as well as sounds that are computed, possibly at run time.
Sampled sounds are the most widely used of all the available sound types primarily
because it is relatively easy to generate a sampled sound and because sampled-sound
data can describe a wide variety of sounds. Sampled sounds are typically used to play
back prerecorded sounds such as speech or special sound effects.

You can use the Sound Manager to store sampled sounds in one of two ways, either as
resources of type ' snd ' or as AIFF or AIFF-C format files. The structure of resources of
type' snd ' is given in “Sound Resources” on page 2-74, and the structure of AIFF and
AIFF-C files is given in “Sound Files” on page 2-81. If you simply want to play short
prerecorded sampled sounds, you should probably include the sound data in"' snd
resources. If you want to allow the user to transfer recorded sound data from one
application to another (or from one operating system to another), you should probably
store the sound data in an AIFF or AIFF-C file. In certain cases, you must store sampled
sounds in files and not in resources. For example, a sampled sound might be too large to
be stored in a resource.

Regardless of how you store a sampled sound, you can use Sound Manager routines to
play that sound. If you choose to store sampled sounds in files of type AIFF or AIFF-C,

About the Sound Manager 2-9

Jabeuel\ punos n

2-10

CHAPTER 2

Sound Manager

you can play those sounds by calling the SndSt ar t Fi | ePl ay function, introduced in
the chapter “Introduction to Sound on the Macintosh” in this book. If you store sampled
sounds in resources, your application can play those sounds by passing the Sound
Manager function SndPl ay a handle to a resource of type ' snd ' that contains a
sampled sound header. (The SndSt ar t Fi | ePl ay function can also play ' snd '
resources directly from disk, but this is not recommended.)

There are three types of sampled-sound headers: the standard sound header, the
extended sound header, and the compressed sound header. The sound header contains
information about the sample (such as the original sampling rate, the length of the
sample, and so forth), together with an indication of where the sample data is to be
found. The sampled sound header can reference only buffers of monophonic, 8-bit
sound. The extended sound header can be used for 8- or 16-bit stereo sound data as well
as monophonic sound data. The compressed sound header can be used to describe
compressed sound data, whether monophonic or stereo. Data can be stored in a buffer
separate from the sound resource or as part of the sound resource as the last field of the
sound header.

Note

The terminology sampled sound header can be confusing because in most
cases the sound header (and hence the' snd ' resource) contains the
sound data as well as information describing the data. Also, do not
confuse sampled sound headers with sound resource headers. Sampled
sound headers contain information about sampled-sound data, but
sound resource headers contain information on the format of an entire
sound resource. O

You can play a sampled sound at its original rate or play it at some other rate to change
its pitch. Once you install a sampled sound header into a channel, you can play it at
varying rates to provide a number of pitches. In this way, you can use a sampled sound
as a voice or instrument to play a series of sounds.

Sampled-sound data is made up of a series of sample frames, which are stored
contiguously in order of increasing time. For noncompressed sound data, each sample
frame contains one or more sample points. For compressed sound data, each sample
frame contains one or more packets.

For multichannel sounds, a sample frame is an interleaved set of sample points or
packets. (For monophonic sounds, a sample frame is just a single sample point or a
single packet.) The sample points within a sample frame are interleaved by channel
number. For example, the sound data for a stereo, noncompressed sound is illustrated
in Figure 2-3.

About the Sound Manager

CHAPTER 2

Sound Manager

Figure 2-3 Interleaving stereo sample points

b= f

___—|1 —))>

Frame n Frame n+1 U Frame n+2 A

ch A chB || ch A chB || ch A | chB

—

iy |

Each sample point of noncompressed sound data in a sample frame is, for sound files, a
linear, two’s complement value, and, for sound resources, a binary offset value. Sample
points are from 1 to 32 bits wide. The size is usually 8 bits, but a different size can be
specified in the sanpl eSi ze field of the extended sound header (for sound resources)
or in the sanpl eSi ze field of the Common Chunk (for sound files). Each sample point
is stored in an integral number of contiguous bytes. Sample points that are from 1 to 8
bits wide are stored in 1 byte, sample points that are from 9 to 16 bits wide are stored in 2
bytes, and so forth. When the width of a sample point is less than a multiple of 8 bits, the
sample point data is left aligned (using a shift-left instruction), and the low-order bits at
the right end are set to 0.

For example, for 8-bit noncompressed sound data stored in a sound resource, each
sample point is similar to a value in a wave-table description. These values are
interpreted as offset values, where $80 represents an amplitude of 0. The value $00 is the
most negative amplitude, and $FF is the largest positive amplitude.

Each packet of 3:1 compressed sound data is 2 bytes; a packet of 6:1 compressed sound is
1 byte. These byte sizes are defined in bits by the constants t hr eeToOnePacket Si ze
and si xToOnePacket Si ze, respectively.

Sound Commands

The Sound Manager provides routines that allow you to create and dispose of sound
channels. These routines allow you to manipulate sound channels, but they do not
directly produce any sounds. To actually produce sounds, you need to issue sound
commands. A sound command is an instruction to produce sound, modify sound, or
otherwise assist in the overall process of sound production. For example, the anpCrrd
sound command changes the amplitude (or volume) of a sound.

You can issue sound commands in several ways. You can send sound commands one at a
time into a sound channel by repeatedly calling the SndDoConmand function. The
commands are held in a queue and processed in a first-in, first-out order. Alternatively,
you can bypass a sound queue altogether by calling the SndDol mmedi at e function. You
can also issue sound commands by calling the function SndPI ay and specifying a sound
resource of type' snd ' that contains the sound commands you want to issue. A sound

About the Sound Manager 2-11

Jabeuel\ punos n

CHAPTER 2

Sound Manager

resource can contain any number of sound commands. As a result, you might be able to
accomplish all sound-related activity simply by creating sound resources and calling
SndPl ay in your application. See “Sound Resources” on page 2-74 for details on the
formatofan' snd ' resource.

Generally speaking, no matter how sound commands are issued, they are all eventually
sent to the Sound Manager, which interprets the commands and plays the sound on the
available audio hardware. The Sound Manager provides a rich set of sound commands.
The structure of a sound command is defined by the ShdConmand data type:

TYPE SndConmand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par ant: I nt eger; {first parameter}

par ang: Longl nt; {second paraneter}
END;

Commands are always 8 bytes in length. The first 2 bytes are the command number, and
the next 6 make up the command’s options. The format of the last 6 bytes depends on
the command in use, although typically those 6 bytes are interpreted as an integer
followed by a long integer. For example, an application can install a wave table into a
sound channel by using SndDoConmand with a sound command whose cnd field is the
waveTabl eCnd constant. In that case, the par anl field specifies the length of the wave
table, and the par an® field is a pointer to the wave-table data itself. Other sound
commands may interpret the 6 parameter bytes differently or may not use them at all.

The sound commands available to your application are defined by constants.

CONST
nul | Cd = 0; {do not hi ng}
qui et Cd = 3; {stop a sound that is playing}
flushCnd = 4; {flush a sound channel }
relnitCnd = b5; {reinitialize a sound channel }
wai t Cd = 10; {suspend processing in a channel}
pauseCnd = 11; {pause processing in a channel}
resuneCnd = 12; {resune processing in a channel}
cal | BackCnd = 13; {execute a cal |l back procedure}
syncCmrd = 14; {synchroni ze channel s}
avai | abl eCnd = 24; {see if initialization options are supported}
ver si onCnd = 25; {determ ne version}
t ot al LoadCnd = 26; {report total CPU | oad}
| oadCnd = 27; {report CPU |l oad for a new channel}
freqDurati onCnd = 40; {play a note for a duration}
rest Cnd = 41; {rest a channel for a duration}
freqCmd = 42; {change the pitch of a sound}
anpCnd = 43; {change the amplitude of a sound}
ti mbr eCnd = 44; {change the tinbre of a sound}

2-12 About the Sound Manager

CHAPTER 2

Sound Manager

get AmpCnd = 45; {get the anplitude of a sound}

vol uneCmd = 46; {set vol une}

get Vol uneCnd = 47; {get vol une}

waveTabl eCd = 60; {install a wave table as a voice}
soundCnd = 80; {install a sanpled sound as a voi ce}
buf f er Cd = 81; {play a sanpl ed sound}

rat eCnd = 82; {set the pitch of a sanpl ed sound}
get Rat eCd = 85; {get the pitch of a sanpled sound}

For details on individual sound commands, see the relevant sections in “Using the
Sound Manager” beginning on page 2-17. Also see “Sound Command Numbers”
beginning on page 2-92 for a complete summary of the available sound commands, their
parameters, and their uses.

Sound Channels

A sound channel is a queue of sound commands that is managed by the Sound
Manager, together with other information about the sounds to be played in that channel.
The commands placed into the channel might originate from an application or from the
Sound Manager itself. The commands in the queue are passed one by one, in a first-in,
first-out (FIFO) manner, to the Sound Manager for interpretation and processing.

The Sound Manager uses the SndChannel data type to define a sound channel.

TYPE SndChannel =
PACKED RECORD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMod: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to callback procedure}
user | nf o: Longl nt ; {free for application' s use}
wai t: Longl nt ; {used internally}
cndl nProgress: SndConmand; {used internally}
flags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
gTai l : I nt eger; {used internally}
gueue: ARRAY[0. . stdQLengt h-1] OF SndConmand;
END;

Most of the fields of the sound channel record are used internally by the Sound
Manager, and you should not access or change them. However, your application is free
to use the user | nf o field to store any information that you wish to associate with a
sound channel. For example, you might store a handle to an application-defined record
that contains information about how your application is using the channel.

Some applications do not need to worry about creating or disposing of sound channels
because the high-level Sound Manager routines take care of these automatically.

About the Sound Manager 2-13

Jabeuel\ punos n

2-14

CHAPTER 2

Sound Manager

However, if you wish to customize sound output or play sounds asynchronously, you
must create your own sound channels (with the SndNewChannel function).

The enhanced Sound Manager included in system software versions 6.0.7 and later
provides the ability to have multiple channels of sampled sound produce output on the
Macintosh audio hardware concurrently. (Previous versions of the Sound Manager could
play only a single channel of sampled sound at a time.) This allows a layering of sound
that can bring a touch of reality to a simulation or presentation and permits applications
to incorporate synthesized speech output with any other kind of Macintosh-generated
sound. Sound Manager version 3.0 extended this capability to allow multiple channels of
any kind of sound data to play simultaneously.

Your application can open several channels of sound for concurrent output on the
available audio hardware. Similarly, multiple applications can each open channels of
sound. The number and quality of concurrent channels of sound are limited only by the
abilities of the machine, particularly by the speed of the CPU. Different Macintosh
computers have different CPU clock speeds and execute instructions at quite different
rates. This means that some machines can manage more channels of sound and produce
higher-quality sound than other machines. For example, a Macintosh Quadra might be
able to support several channels of high-quality stereo sound without significant impact
on other processing, whereas a Macintosh Plus might be able to support only a single
channel of monophonic sound before other processing slows significantly.

The Sound Manager currently supports multiple channels of sound only on machines
equipped with an Apple Sound Chip or equivalent hardware. To maintain maximum
compatibility between machines for your applications, you should always check the
operating environment to make sure that the ability to play multiple channels of
sampled sound is present before attempting to do so. A technique for determining
whether your application can play multiple channels of sound is described in “Testing
for Multichannel Sound and Play-From-Disk Capabilities” on page 2-35.

Sound Compression and Expansion

One minute of monophonic sound recorded with the fidelity you would expect from a
commercial compact disc occupies about 5.3 MB of disk space. One minute of sound
digitized by the current low-fidelity digitizing peripherals for Macintosh computers
occupies more than 1 MB of disk space. Even one minute of telephone-quality speech
takes up more than half of a megabyte on a disk. Despite the increased capacities of
mass-storage devices, disk space can be a problem if your application incorporates large
amounts of sampled sound. The space problem is particularly acute for multimedia
applications. Because a large portion of the space occupied by a multimedia application
is likely to be taken up by sound data, the complexity and richness of the application’s
sound component are limited.

To help remedy this problem, the Sound Manager includes a set of routines known
collectively as Macintosh Audio Compression and Expansion (MACE). MACE enables
you to provide more audio information in a given amount of storage space by allowing
you to compress sound data and then expand it for playback. These enhancements are
based entirely in software and require no specialized hardware.

About the Sound Manager

CHAPTER 2

Sound Manager

The audio compression and expansion features allow you to enhance your application
by including more audio data. MACE also relieves some distribution problems by
reducing the number of disks required for shipping an application that relies heavily on
sound. MACE has made some kinds of applications, such as talking dictionaries and
foreign language-instruction software, more feasible than before.

MACE adds three main kinds of capabilities to those already present in the Sound
Manager: audio data compression, real-time expansion and playback of compressed
audio data, and buffered expansion and playback of compressed audio data.

= Compression. The Sound Manager can compress a buffer of digital audio data either
in the original buffer or in a separate buffer. If a segment of audio data is too large to
fit into a single buffer, your application can make repeated calls to the compression
routine.

= Real-time expansion playback. The Sound Manager can expand compressed audio
data contained in a small internal buffer and play it back at the same time. Because the
audio data expansion and playback occur at the same time, there is more of a strain on
the CPU when using this method of sound expansion rather than buffered expansion.

= Buffered expansion. The Sound Manager can expand a specified buffer of
compressed audio data and store the result in a separate buffer. The expanded buffer
can then be played back using other Sound Manager routines with minimal processor
overhead during playback. Applications that require screen updates or user
interaction during playback (such as animation or multimedia applications) should
use buffered expansion.

MACE provides audio data compression and expansion capabilities in ratios of either 3:1
or 6:1 for all currently supported Macintosh models, from the Macintosh Plus forward.
The principal tradeoff when using MACE is that the expanded audio data suffers a loss
of fidelity in comparison to the original data. A small amount of noise is introduced into
a 3:1 compressed sound when it is expanded and played back, and a greater amount of
noise for the 6:1 ratio. The 3:1 buffer-to-buffer compression and expansion option is well
suited for high-fidelity sounds. The 6:1 buffer-to-buffer compression and expansion
option provides greater compression at the expense of lower-fidelity results and is
recommended for voice data only. This technique reduces the frequency bandwidth of
the audio signal by a factor of two to achieve the higher compression ratio.

MACE allows for the compression of both monophonic and stereo sounds. However,
some Macintosh computer models (such as the Macintosh Plus and Macintosh SE)
cannot expand stereo sounds.

Note

With Sound Manager versions prior to 3.0, some Macintosh computers
play only the right channel of stereo ' snd ' data through the internal
speaker. Certain Macintosh II models can play only a single channel
through the internal speaker. Sound Manager version 3.0 removes both
of these limitations. O

Existing applications that use the Sound Manager’s SndPl ay function to play digitized
audio signals can play compressed audio signals without modification or recompilation.

About the Sound Manager 2-15

Jabeuel\ punos n

2-16

CHAPTER 2

Sound Manager

The MACE routines assume that each original sample consists of 8-bit sound in binary
offset format. The compression techniques do not, however, depend on a particular
sample rate (the rate at which samples are recorded). Table 2-1 shows some common
sample rates, expressed both as hertz and as unsigned fixed-point values.

Table 2-1 Sample rates

Rate (Hz) Sample rate value (Fixed)
44100.00000 $AC440000

22254.54545 $56EESBA3

22050.00000 $56EESBA3

11127.27273 $2B7745D1

11025.00000 $2B110000

7418.1818 $1CFA2ESB

5563.6363 $15BBA2ES8

The Sound Manager defines constants for the most common sample rates:

CONST
r at e44khz = $AC440000; {44100. 00000 in fixed-point}
rat e22khz = $56EE8BA3; {22254. 54545 in fixed-point}
rat e22050hz = $56220000; {22050. 00000 in fixed-point}
ratellkhz = $2B7745D1; {11127. 27273 in fixed-point}
ratell025hz = $2B110000; {11025. 00000 i n fixed-point}

The compression techniques produce their best quality output when the sample rate is
the same as the output rate of the sound hardware of the machine playing the audio
data. The output rate used in most current Macintosh computers is 22.254 kilohertz
(hereafter referred to as the 22 kHz rate). Because of speed limitations, the Macintosh
Plus and Macintosh SE cannot perform sample-rate conversion during expansion
playback. On those machines, all sounds are played back at a 22 kHz rate. To provide
consistent quality in sounds that might be played on different machines, you should
record all sounds at a 22 kHz sample rate.

The MACE algorithms are optimized to provide the best sound quality possible through
the internal speaker in real time. However, the user who employs high-quality speakers
might notice a high-frequency hiss for some sounds compressed at the 3:1 ratio. This hiss
results from a design tradeoff between maintaining real-time operation on the Macintosh
Plus and preserving as much frequency bandwidth of the signal as possible. If you think
that your output might be played on high-quality speakers, you might want to filter out
the hiss before compression by passing the audio output through an equalizer that
removes frequencies above 10 kHz. When you use the 6:1 compression and expansion
ratio, your frequency response is cut in half. For example, when you use the 22 kHz

About the Sound Manager

CHAPTER 2

Sound Manager

sample rate, the highest frequency possible would normally be 11 kHz; however, after
compressing and expanding the data at the 6:1 ratio, the highest frequency you could get
would be only 5.5 kHz.

Note

The Sound Manager uses compressions and decompression components
(codecs) to handle the MACE capabilities. You can provide custom
codecs to use other compression and decompression algorithms. See the
chapter “Sound Components” in this book for information on
developing audio codecs. O

Using the Sound Manager

Jabeuel\ punos n

The Sound Manager provides a wide variety of methods for creating sound and
manipulating audio data on Macintosh computers. Usually, your application needs
to use only a few of the many routines or sound commands that are available.

The Sound Manager routines can be divided into high-level routines and low-level
routines. The high-level routines (like SndPl ay and SysBeep) give you the ability to
produce very complex audio output at very little programming expense. The majority of
applications interact with the Sound Manager using these high-level routines, which
allow you to play sounds without knowing anything about the structure of sound
commands or sampled-sound data. You can let the high-level routines automatically
allocate channels, or, for increased control, you can allocate your own sound channels.

Applications that have more sophisticated sound capabilities use the low-level routines
(like SndDoConmand and SndDol medi at e) to send sound commands to sound
channels. For example, your application might send a sound command to alter the
amplitude of a sound that is playing (or is about to play).

Finally, a few very specialized applications use the Sound Manager’s low-level sound
playback routines, which allow fine-tuning of the algorithms the Sound Manager uses to
manage the double buffering of sound for its play-from-disk routines.

In general, you should use the highest-level routines capable of producing the kind of
sound you want. Many applications can simply play sounds stored in resources or files
and do not need to customize the sounds or continue with other processing while those
sounds are playing. In such cases, you can use the high-level Sound Manager routines,
as illustrated in the chapter “Introduction to Sound on the Macintosh” in this book. If,
however, you need to be able to exercise very fine control over sound output or to play
sounds asynchronously, you must manage your own sound channels. See “Managing
Sound Channels” on page 2-19 to learn how you can use the Sound Manager to

= allocate and dispose of sound channels manually by using the SndNewChannel and
SndDi sposeChannel functions

= manipulate sound that is playing (for example, by sending the anpCnd command to a
sound channel to change the amplitude of sound playing)

Using the Sound Manager 2-17

2-18

CHAPTER 2

Sound Manager

= stop sounds and flush sound channels by using the qui et Cnd and f | ushCnd
commands

= pause and restart sound channels by using the pauseCnd and r esuneCnrd commands
= synchronize sound channels by using the syncCnd command

As you’ve learned, the capabilities of the Sound Manager vary greatly from one
Macintosh computer to another, depending on which version of the Sound Manager is
available on a particular computer and on what audio hardware is available. To create
sounds effectively on all computers, you might need to obtain information about the
available sound features. “Obtaining Sound-Related Information” on page 2-32 explains
how you can

= use the Gest al t function to determine which basic sound features are available

» find the version number of the available Sound Manager or of the MACE compression
and expansion routines

s determine whether your application can take advantage of multichannel sound and
the play-from-disk routines

» obtain information about a single sound channel

Some applications need to be able to play computer-generated tones at different pitches.
In addition, some applications need to play waveforms or sampled sounds at different
pitches. For example, if you are writing an application that converts musical notes to
sound, you might record the sound of a violin playing middle C and then replay the
sound at a variety of pitches to simulate a violinist’s playing a concerto. The Sound
Manager allows you to do this by allocating a sound channel and sending sound
commands to it. “Playing Notes” on page 2-41 explains how you can

» play simple sequences of notes by using the f r eqCnd and f r eqDur at i onCrd
commands

» install waveforms or sampled sounds into channels by using the soundCnd and
waveTabl eCnd commands so that you can play them at different frequencies

» set a sound resource’s loop points so that the sound repeats if a f r eqCnd or
f regDur ati onCnd command lasts longer than the sound

Although some applications do not need to do other processing while sounds are
playing, others do. If your application allocates sound channels itself, it can request that
the Sound Manager play sounds asynchronously. By using callback procedures and
completion routines, your application can arrange for a sound channel to be disposed
when a sound finishes playing. “Playing Sounds Asynchronously” on page 2-46 explains
how you can

» play a sound resource asynchronously by defining a callback procedure

» use callback procedures to synchronize sounds you play asynchronously with
other actions

» play a sound file asynchronously and pause, restart, or stop such an asynchronous
playback

Using the Sound Manager

CHAPTER 2

Sound Manager

= manage multiple channels of sound to play more than one sound asynchronously at
the same time

The high-level Sound Manager routines automatically parse sound resources and sound
files to determine the information the Sound Manager needs to play the sounds
contained in the resources and files. However, you might need to obtain information
about sound resources or sound files for some other reason. Or, you might need to locate
a certain part of a sound resource or sound file. For example, to use the buf f er Crrd
sound command to play a buffer of sampled sound, you must obtain a pointer to the
sound header contained in that buffer. See the section “Parsing Sound Resources and
Sound Files” on page 2-56 for information on how to

= parse sound resources containing sampled-sound data to obtain information from the
sampled-sound data’s sound header

= use the buf f er Cnmd command to play sampled-sound data stored within a sound
resource

= parse sound files to find a particular chunk and to extract the data from that chunk

High-level Sound Manager routines automatically expand sound data in real time when
playing compressed sounds. However, you might need to manually compress or expand
sound data at a time when you are not playing sounds. “Compressing and Expanding
Sounds” on page 2-66 explains how you can use the Sound Manager’s built-in sound
compression and expansion routines to compress or expand sounds.

The Sound Manager’s high-level play-from-disk routines use highly optimized
algorithms to manage the double buffering of data so that the play from disk is
continuous and without audible gaps. However, if you wish to bypass the high-level
Sound Manager play-from-disk routines, you may define your own double-buffering
routines. This might be useful if you need to change the sound data on disk before the
Sound Manager can process it. The section “Using Double Buffers” on page 2-68 explains
how you can set up your own double buffers and use a doubleback procedure to bypass
the normal play-from-disk routines.

Managing Sound Channels

To use most of the low-level Sound Manager routines, you must specify a sound channel
that maintains a queue of commands. Also, to take advantage of the full capabilities of
the high-level Sound Manager routines, including asynchronous sound play, you must
allocate your own sound channels. This section explains how your application can
allocate, dispose of, and use its own sound channels.

This section first describes how you can allocate and dispose of sound channels.
Then it explains how you can manipulate sounds playing in sound channels, stop
sounds playing in sound channels, and pause and restart the execution of sounds
in sound channels.

Using the Sound Manager 2-19

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Allocating Sound Channels

Usually, you do not need to worry about allocating memory for sound channels because
the SndNewChannel function automatically allocates a sound channel record in the
application’s heap if passed a pointer to a NI L sound channel. SndNewChannel also
internally allocates memory for the sound channel’s queue of sound commands. For
example, the following lines of code request that the Sound Manager open a new sound
channel for playing sampled sounds:

nySndChan : = NI L;
myErr : = SndNewChannel (nySndChan, sanpledSynth, 0, NL);

If you are concerned with managing memory yourself, you can allocate your own
memory for a sound channel record and pass the address of that memory as the first
parameter to SndNewChannel . By allocating a sound channel record manually, you not
only obtain control over the allocation of the sound channel record, but you can specify
the size of the queue of sound commands that the Sound Manager internally allocates.
Listing 2-1 illustrates one way to do this.

Listing 2-1 Creating a sound channel

FUNCTI ON MyCr eat eSndChannel (synth: Integer; initOptions: Longlnt;

user Routine: ProcPtr;
queuelLengt h: Integer): SndChannel Ptr;

VAR
nySndChan: SndChannel Ptr; {pointer to a sound channel}
nmyErr: OSErr;

BEG N

{Al'l ocate nenory for sound channel .}

mySndChan : = SndChannel Ptr (NewPt r (Si zeof (SndChannel)));
| F mySndChan <> NIL THEN

BEG N

mySndChan”. gLengt h : = queuelLength; {set nunber of conmands in queue}
{Create a new sound channel .}

nyErr : = SndNewChannel (nySndChan, synth, initQptions, userRoutine);
IF nyErr <> noErr THEN

BEG N {couldn't allocate channel}
Di sposePtr (Ptr(nySndChan)); {free nenory al ready all ocat ed}
mySndChan : = NIL; {return NI L}
END
ELSE
mySndChan”. userinfo : = 0; {reset userinfo field}
END;
MyCr eat eSndChannel : = nmySndChan; {return new sound channel }
END;
2-20 Using the Sound Manager

CHAPTER 2

Sound Manager

The MyCr eat eSndChannel function defined in Listing 2-1 first allocates memory for a
sound channel record and then calls the ShdNewChannel function to attempt to allocate
a channel. Note that MyCr eat eSndChannel checks the result code returned by
SndNewChannel to determine whether the function was able to allocate a channel. The
SndNewChannel function might not be able to allocate a channel if there are so many
channels open that allocating another would put too much strain on the CPU. Also,
SndNewChannel might fail if memory is low. (In addition to the memory for a sound
channel record that is passed in the first parameter to SndNewChannel , the function
must internally allocate memory in which to store sound commands.)

If you allocate memory for a sound channel record, you should specify the size of the
queue of sound commands by assigning a value to the qLengt h field of the sound
channel record you allocate. You can use the constant st dQLengt h to obtain a standard
queue of 128 sound commands, or you can provide a value of your own.

CONST
stdQ.ength = 128; {default size of a sound channel}

If you know that your application will play only resources containing sampled sound,
you might set the gLengt h field to a considerably lower value, because resources
created with the SndRecor d function (described in the chapter “Introduction to Sound
on the Macintosh” in this book) contain only one sound command, the buf f er Cnd
command, which specifies that a buffer of sound should be played. For example, if your
application uses a sound channel only to play a single sampled sound asynchronously,
you can set gLengt h to 2, to allow for the buf f er Cnmd command and a cal | BackCnd
command that your application issues manually, as described in “Playing Sounds
Asynchronously” on page 2-46. By using a smaller than standard queue length, your
application can conserve memory.

Note

The number of sound commands in a channel should be an integer
greater than 0. If you open a channel with a 0-length queue, most of the
Sound Manager routines will return a badChannel result code. O

IMPORTANT

In general, however, you should let the Sound Manager allocate sound
channel records for you. The amount of memory you might save by
allocating your own is usually negligible. a

The second parameter in the SndNewChannel function specifies the kind of data you
want to play on that channel. You can specify one of the following constants:

CONST
squar eWaveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-tabl e dat a}
sanpl edSynt h = b; {sanpl ed- sound dat a}

In some versions of system software prior to system software version 7.0 (including
system software version 6.0.7), high-level Sound Manager routines do not work properly

Using the Sound Manager 2-21

Jabeuel\ punos n

2-22

CHAPTER 2

Sound Manager

with sound resources that specify the sound data type twice. This might happen if a
resource specifies that a sound consists of sampled-sound data and an application does
the same when creating a sound channel. This might also happen if an application uses
the same sound channel to play several sound resources that contain different kinds of
sound data. There are several solutions to this problem that you can use if you must
maintain compatibility with old versions of system software:

= If your application plays only sampled-sound resources, then you need only ensure
that none of the sound resources specifies that it contains sampled-sound data. Then,
when you create a sound channel, pass sanpl edSynt h as the second parameter to
SndNewChannel so that the Sound Manager interprets the data in the sound
resources correctly. Do not use the SndPl ay routine.

s If your application must be able to play sampled-sound resources as well as resources
that contain square-wave or wave-table data, ensure that all sound resources that your
application uses specify their data type. (Sound resources created with the Sound
Input Manager automatically specify that they contain sampled-sound data.) Then,
when creating a channel in which you plan to play a sound resource, pass 0 as the
second parameter to SndNewChannel , and then use the channel to play no more than
one sound resource.

= If you do not wish to modify your application’s sound resources, and your
application plays only sampled-sound resources, then you can play sounds with
low-level Sound Manager routines, a technique described in “Playing Sounds Using
Low-Level Routines” on page 2-61.

Note that this problem does not occur with sound files, because sound files always
contain sampled-sound data and thus do not explicitly declare their data type. As a
result, when creating a channel in which you plan to play a sound file, pass

sanpl edSynt h as the second parameter to SndNewChannel .

The third parameter in the SndNewChannel function specifies the initialization
parameters to be associated with the new channel. These are discussed in the following
section. The fourth parameter in the SndNewChannel function is a pointer to a callback
procedure. If your application produces sounds asynchronously or needs to be alerted
when a command has completed, you can specify a callback procedure by passing the
address of that procedure in the fourth parameter and then by installing a callback
procedure into the sound channel. If you pass NI L as the fourth parameter, then

no callback procedure is associated with the channel. See “Playing Sounds
Asynchronously” on page 2-46 for more information on setting up and using

callback procedures.

Initializing Sound Channels

When you first create a sound channel with SndNewChannel , you can request that the
channel have certain characteristics as specified by a sound channel initialization
parameter. For example, to indicate that you want to allocate a channel capable of
producing stereo sound, you might use the following code:

myErr : = SndNewChannel (nmySndChan, sanpl edSynth, initStereo, N L);

Using the Sound Manager

CHAPTER 2

Sound Manager

These are the currently recognized constants for the sound channel initialization
parameter.

CONST
i ni tChanLeft = $0002; {left stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-tabl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i ni t Mono = $0080; { monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACE3 = $0300; {3:1 conpression}
i ni t MACEG = $0400; {6:1 conpression}
initNolnterp = $0004; {no linear interpolation}
i ni t NoDrop = $0008; {no drop-sanpl e conversion}

See “Channel Initialization Parameters” beginning on page 2-91 for a complete
description of these constants.

Note

Some Macintosh computers play only the left channel of stereo sounds
out the internal speaker. Other machines (for example, the Macintosh
SE /30 and Macintosh IlIsi) mix both channels together before sending a
signal to the internal speaker. You can use the Gest al t function to
determine if a particular machine mixes both left and right channels to
the internal speaker. All Macintosh computers except the Macintosh SE
and the Macintosh Plus, however, play stereo signals out the headphone
jack. O

The initialization parameters are additive. To initialize a channel for stereo sound with
no linear interpolation, simply pass an initialization parameter that is the sum of the
desired characteristics, as follows:

nyErr := SndNewChannel (nySndChan, sanpl edSynt h,
initStereo+initNolnterp, NL);

A call to SndNewChannel is really only a request that the Sound Manager open a
channel having the desired characteristics. It is possible that the parameters requested
are not available. In that case, SndNewChannel returns a not EnoughHar dwar eEr r
error. In general, you should pass 0 as the third parameter to SndNewChannel unless
you know exactly what kind of sound is to be played.

You can alter certain initialization parameters, even while a channel is actively playing a
sound, by issuing the r el ni t Cnd command. For example, you can change the output
channel from left to right, as shown in Listing 2-2.

Using the Sound Manager 2-23

Jabeuel\ punos n

CHAPTER 2

Sound Manager

2-24

Listing 2-2 Reinitializing a sound channel
VAR
nmy SndCnd: SndCommand,;
ny SndChan: SndChannel Ptr;
nmyErr: OSErr;

mySndCd. cnd : = relnitCnd;

nmySndCnd. paranil : = 0; {unused}

mySndCnd. paran® : = initChanRi ght; {new init paraneter}
nyErr : = SndDol nredi at e(mySndChan, mySndCnd);

The r el ni t Cnd command accepts the i ni t Nol nt er p constant to toggle linear
interpolation on and off; it should be used with noncompressed sounds only. If an
noncompressed sound is playing when you send ar el ni t Cnd command with this
constant, linear interpolation begins immediately. You can also pass i ni t Mono,

i ni t ChanLeft, ori nit ChanRi ght to pan to both channels, to the left channel, or to
the right channel. This affects only monophonic sounds. The Sound Manager remembers
the settings you pass and applies them to all further sounds played on that channel.

Releasing Sound Channels

To dispose of a sound channel that you have allocated with SndNewChannel , use the
SndDi sposeChannel function. SndDi sposeChannel requires two parameters, a
pointer to the channel that is to be disposed and a Boolean value that indicates whether
the channel should be flushed before disposal. Here’s an example:

nyErr : = SndDi sposeChannel (mySndChan, TRUE);

Because the second parameter is TRUE, the Sound Manager sends both a f [ushCnd
command and a qui et Cnd command to the sound channel (using SndDol medi at e).
This removes all commands from the sound channel and stops any sound already in
progress. Then the Sound Manager disposes of the channel.

If the second parameter is FALSE, the Sound Manager simply queues a qui et Cnd
command (using SndDoCommand) and waits until qui et Cnd is received by the channel
before disposing of the channel. In this case, the SndDi sposeChannel function does
not return until the channel has finished processing commands and the queue is empty.

WARNING

If you dispose of a channel currently playing from disk, then your
completion routine will still execute, but will receive a pointer to a
sound channel that no longer exists. Thus, you should stop a play from
disk before disposing of a channel. See “Managing an Asynchronous
Play From Disk” on page 2-52 for more information on completion
routines. a

Using the Sound Manager

CHAPTER 2

Sound Manager

Although the SndDi sposeChannel function always releases memory reserved for
sound commands, SndDi sposeChannel cannot release memory associated with a
sound channel record if you have allocated that memory yourself. For example, if you
use the MyCr eat eSndChannel function defined in Listing 2-1 to create a sound
channel, you must dispose first of the sound channel and then of the memory occupied
by the sound channel record, as illustrated in Listing 2-3.

Listing 2-3 Disposing of memory associated with a sound channel

FUNCTI ON MyDi sposeSndChannel (sndChan: SndChannel Ptr; qui et Now. Bool ean):

CSErr;
VAR
nmyErr: OSErr;
BEG N
nyErr := SndDi sposeChannel (sndChan, qui etNow); {dispose of channel}
Di sposePtr (Ptr(sndChan)); {di spose of channel ptr}
MyDi sposeSndChannel := nyErr;
END;

If you have played a sound resource through a channel, the SndDi sposeChannel
function does not free the memory taken by the resource. You must call the Resource
Manager’s Rel easeResour ce function to do so, or, if you have detached a resource
from a resource file, you could free the memory by making the handle unlocked and
purgeable. Note that if you play a sound resource asynchronously, you should not
release the memory occupied by the resource until the sound finishes playing or the
sound might not play properly. For information on releasing a sound resource after
playing a sound asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

IMPORTANT

In Sound Manager versions 3.0 and later, you can play sounds in any
number of sound channels. In earlier Sound Manager versions, however,
only one kind of sound can be played at one time. This results in several
important restrictions on your application. In Sound Manager version 2
and earlier, you should create sound channels just before playing
sounds. Once the sound is completed, you should dispose of the
channel. If your application is switched out and does not release a sound
channel, then other applications may be unable to open sound channels.
In particular, the system alert sound might not be heard and the user
might not be notified of important system occurrences. In general, while
it is acceptable to issue a number of sound commands to the same sound
channel, it's not a good idea to play more than one sampled sound on
the same sound channel. a

Manipulating a Sound That Is Playing

The Sound Manager provides a number of sound commands that you can use to change
some of the characteristics of sounds that are currently playing. For example, you can

Using the Sound Manager 2-25

Jabeuel\ punos n

CHAPTER 2

Sound Manager

alter the rate at which a sampled sound is played back, thereby lowering or increasing
the pitch of the sound. You can also pause or stop a sound that is currently in progress.
See “Pausing and Restarting Sound Channels” on page 2-29 for information on how to
pause the processing of a sound channel.

You can use the get Rat eCnd command to determine the rate at which a sampled sound
is currently playing. If SndDol mredi at e returns noEr r when you pass get Rat eCnd,
the current sample rate of the channel is returned as a Fi xed value in the location that is
pointed to by par an? of the sound command. (As usual, the high bit of that value
returned is not interpreted as a sign bit.) Values that specify sampling rates are always
interpreted relative to the 22 kHz rate. That is, the Fi xed value $00010000 indicates a
rate of 22 kHz. The value $00020000 indicates a rate of 44 kHz. The value $00008000
indicates a rate of 11 kHz.

To modify the pitch of a sampled sound currently playing, use the r at eCmd command.
The current pitch is set to the rate specified in the par an® field of the sound command.
Listing 2-4 illustrates how to halve the frequency of a sampled sound that is already
playing. Note that sending the r at eCnmd command before a sound plays has no effect.

Listing 2-4 Halving the frequency of a sampled sound

2-26

FUNCTI ON MyHal veFreq (mySndChan: SndChannel Ptr): OSErr;
VAR

myRat e: Longl nt ; {rate of sound pl ay}
nmy SndCnd: SndCommand,; {a sound conmand}
myErr: OSErr;

BEG N

{CGet the rate of the sanple currently playing.}

nmySndCnd. cnd : = get Rat eCnd; {the conmmand is get Rat eCnd}
mySndCnd. paranil : = O; {unused}

nySndCnd. paran® : = Longlnt (@vyRate);

nyErr : = SndDol nmedi at e(mySndChan, mnmySndCnd) ;

I F nyErr = noErr THEN

BEG N
{Hal ve the sanple rate.}
nmySndCnd. cnd : = rat eCnd; {the command is rateCnd}
nmySndCnd. paranil : = 0; {unused}
nySndCnd. paran? : = Fi xDi v(nyRate, $00020000);
nyErr : = SndDol nredi at e(mySndChan, mySndCnd) ;

END;

MyHal veFreq : = nyErr;

END;

When you halve the frequency of a sampled sound using the technique in Listing 2-4, the
sound will play one octave lower than before. In addition, the sound will play twice as

Using the Sound Manager

CHAPTER 2

Sound Manager

slowly as before. Likewise, if you use the r at eCnd command to double the frequency of
a sound, it plays one octave higher and twice as fast. Using r at eCnd in this way is like
pressing the fast forward button on a tape player while the play button remains
depressed.

You can also use r at eCmd and get Rat eCnd to pause a sampled sound that is currently
playing. To do this, read the rate at which it is playing, issue a r at eCnd command with
a rate of 0, and then issue a r at eCnd command with the previous rate when you want
the sound to resume playing.

To change the amplitude (or loudness) of the sound in progress, issue the anpCrrd
command. (See Listing 2-5 for an example.) If no sound is currently playing, anpCnd sets
the amplitude of the next sound. Specify the desired new amplitude in the par aml field
of the sound command as a value in the range 0 to 255.

Listing 2-5 Changing the amplitude of a sound channel

PROCEDURE MySet Anpl i tude (chan: SndChannel Ptr; nyAmp: |nteger);
VAR

nmy SndCnd: SndCommand,; {a sound conmand}
myErr: OSErr;
BEG N
| F chan <> NIL THEN
BEG N
W TH nmySndCnd DO
BEG N
cmd = anmpCnd; {the command i s anpCnd}
paraml : = nmyAnp; {desired anplitude}
paran? := 0; {ignored}
END;

myErr := SndDol nmredi at e(chan, nySndCnd);
I F nyErr <> noErr THEN
DoError (nmyErr);
END;
END;

If your application has an option that allows users to turn off sound output, you could
call the MySet Anpl i t ude procedure on all open channels to set the amplitude of all
channels to 0. Note that the Sound control panel allows the user to adjust the sound from
0 (softest) to 7 (loudest). This value is independent of the values used for amplitudes of
sounds playing in channels, and the Sound Manager uses the Sound control panel value
jointly with the amplitude of a sound channel to determine how loudly to play a sound.
Sounds with low frequencies sound softer than sounds with high frequencies even if the
sounds play at the same amplitude. If the amplitude of a sound is 0, the sound hardware
produces no sound; however, when the value set in the Sound control panel is 0, sound
might still play, depending on the amplitude.

Using the Sound Manager 2-27

Jabeuel\ punos n

CHAPTER 2

Sound Manager

You can use the get AnpCnd command to determine the current amplitude of a sound in
progress. The get AmpCnd command is similar to get Rat eCrrd, except that the value
returned is an integer. The value returned in par an® is in the range 0-255. Listing 2-6
shows an example:

Listing 2-6 Getting the amplitude of a sound in progress

2-28

VAR
my Anp: I nt eger;
BEG N
nmySndCnd. cnd : = get AnpCnd;
mySndCnd. paranil : = O; {unused}
nySndCnd. paran? : = Longl nt (@yAm);
nyErr : = SndDol nmedi at e(mySndChan, mnmySndCnd);
END;

To modify the timbre of a sound defined using by square-wave data, use the t i nbr eCnd
command. A sine wave is specified as 0 in par anl and produces a very clear sound. A
value of 254 in par ani represents a modified square wave and produces a buzzing
sound. To avoid a bug in some versions of the Sound Manager, you should not use the
value 255. You should change the timbre before playing the sound.

Stopping Sound Channels

The Sound Manager allows you both to stop a sound currently in progress in a channel
and to remove all pending sound commands from a channel.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can stop play by using the SndSt opFi | ePl ay
function. See “Managing an Asynchronous Play From Disk” on

page 2-52 for more details. O

To cause the Sound Manager to stop playing the sound in progress, send the qui et Cd
command. Here’s an example:

nmySndCnd. cnd : = qui et Cnd; {the command is quiet Cnd}
mySndCnd. paranil : = 0; {unused}
nySndCnd. paran® : = 0; {unused}

{stop the sound now pl ayi ng}
nyErr : = SndDol nedi at e(mySndChan, mnmySndCnd, FALSE);

To bypass the command queue, you should issue qui et Cnd by using

SndDol nmedi at e. Any sound commands that are already in the sound channel
remain there, however, and further sound commands can be queued in that channel.

Using the Sound Manager

CHAPTER 2

Sound Manager

If you wish to flush a sound channel without disturbing any sounds already in progress,
issue the f | ushCnd command. Here’s an example:

nmySndCnd. cnd : = fl ushCnd; {the command is flushCnd}
mySndCnd. paranil : = O; {unused}
nmySndCd. paran? : = 0; {unused}

{flush the channel}
nyErr : = SndDol nredi at e(mySndChan, mnmySndCnd, FALSE);

If you want to stop all sound production by a particular sound channel immediately, you
should issue a f | ushCrrd command and then a qui et Cnd command. If you issue only a
f 1 ushCd command, the sound currently playing is not stopped. If you issue only a

qui et Cmd command, the Sound Manager stops the current sound but continues with
any other queued commands. (By calling f | ushCnd before qui et Cnd, you ensure that
no other queued commands are processed.)

Note

The Sound Manager sends a qui et Cnd command when your
application calls the SndDi sposeChannel function. The qui et Cnd
command is preceded by a f | ushCnd command if the qui et Now
parameter is TRUE. O

Pausing and Restarting Sound Channels

If you want to pause command processing in a particular channel, you can use either of
two sound commands, wai t Crrd or pauseCnd.

Note

If you have started a sound playing by using the SndSt art Fi | ePl ay
function, then you can pause and resume play by using the
SndPauseFi | ePl ay function. See “Managing an Asynchronous Play
From Disk” on page 2-52 for more details. O

The wai t Crd command suspends all processing in a channel for a specified number of
half-milliseconds. Here’s an example:

nySndCnd. cnd : = wait Cnd; {the command is wait Cnd}
nmySndCnd. par anil : = 2000; {1-second wait duration}
nmySndCnd. paran? : = 0; {unused}

{pause the channel}
nyErr : = SndDol nredi at e(mySndChan, mnmySndCnd, FALSE);

To pause the processing of commands in a sound channel for an unspecified duration,
use the pauseCnd command. Unlike wai t Crrd, pauseCnd suspends processing for an
undetermined amount of time. Processing does not resume until the Sound Manager
receives a r esumeCnd command for the specified channel.

Using the Sound Manager 2-29

Jabeuel\ punos n

CHAPTER 2

Sound Manager

To issue wai t Cnd or pauseCnd, you can use either ShdDol nmedi at e or
SndDoConmmand, depending on whether you want the suspension of sound channel
processing to begin immediately or when the Sound Manager reaches that command in
the normal course of reading commands from a sound channel. The r esuneCnd
command, which is simply the opposite of pauseCnd, should be issued by using
SndDol nmedi at e. Neither wai t Cnd nor pauseCnd stops any sound that is currently
playing; these commands simply stop further processing of commands queued in the
sound channel.

Note

If no other commands are pending in the sound channel after a

r esumeCnd command, the Sound Manager sends an enpt yCnd
command. The enpt yCrd command is sent only by the Sound Manager
and should not be issued by your application. O

Synchronizing Sound Channels

You can synchronize several different sound channels by issuing syncCnd commands.
The par am field of the sound command contains a count, and the par an® field
contains an arbitrary identifier. The Sound Manager keeps track of the count for each
channel being synchronized. When the Sound Manager receives a syncCnd command
for a certain channel, it decrements the count for each channel having the given
identifier, including the newly synchronized channel. Command processing resumes on
a channel when the count becomes 0. Thus, if you know how many channels you need to
synchronize, you can synchronize them all by arranging for all of their counts to become
zero simultaneously. Listing 2-7 illustrates the use of the syncCnd command.

Listing 2-7 Adding a channel to a group of channels to be synchronized

PROCEDURE MySynclChan (chan: SndChannel Ptr; count: Integer;
identifier: Longlnt);

VAR
my SndCnd: SndConmand; {a sound comand}
myErr: CSErr;
BEG N
W TH nmySndCnd DO
BEG N
cnd = syncCnd; {the conmmand is syncCnd}
paranl : = count;
paran? : = identifier; {ID of group to be synchroni zed}
END;

myErr := SndDol nmredi at e(chan, nySndCnd);
I F nyErr <> noErr THEN
DoError (nmyErr);
END;

2-30 Using the Sound Manager

CHAPTER 2

Sound Manager

For example, to synchronize three channels, first create the channels and then call the
My Sync1Chan procedure defined in Listing 2-7 for the first channel with a count equal
to 4, for the second channel with a count equal to 3, and for the third channel with a
count equal to 2, using the same arbitrary identifier for each call to MySync1Chan. Then
fill all channels with appropriate sound commands. (For example, you might send
commands that will cause the same sequence of notes to be produced on all three
synchronized channels.) Finally, call the MySync1Chan procedure one final time,
passing any of the three channels and a count of 1. By that time, all of the other channels
will have counts of 1, and all counts will become 0 simultaneously, thus initiating
synchronized play.

Note

The syncCnmd command is intended to make it easy to synchronize
sound channels. You can use the syncCnd command to start multiple
channels of sampled sound playing simultaneously, but if you require
precise synchronization of sampled-sound channels, you might
achieve better results with the Time Manager, which is described

in Inside Macintosh: Processes. O

Managing Sound Volumes

Versions of the Sound Manager prior to 3.0 allow you to set only one volume level,
which applies to all sounds produced by the audio hardware. The Sound Manager
versions 3.0 and later provide greatly improved control over the volumes of the sounds
you ask it to create. You can use new facilities to

» set the volumes of the left and right channels of sound independently of each other
» set the volume of the system alert sound

» set the default volume of a particular sound output device

You can set the system alert sound volume to a different level than that of any other
sounds you produce. For example, you can set the system alert sound to play at a lower
volume than other sounds. This would allow a user to hear QuickTime movies at full
volume and to hear system alert sounds at a lower volume.

You can use the vol uneCnd and get Vol uneCnd sound commands to set and get the
right and left volumes of sound. You specify a channel’s volume with 16-bit value, where
0 represents no volume and hexadecimal $0100 represents full volume. The Sound
Manager defines constants for silence and full volume.

CONST
kFul | Vol ume = $0100;
kNoVol une = 0;

The vol umeCnd sound command expects the right and left volumes to be encoded as
the high word and low word, respectively, of par an®2. For example, to set the left
channel to half volume and the right channel to full volume, you pass the value
$01000080 in par an®, as illustrated in Listing 2-8.

Using the Sound Manager 2-31

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Listing 2-8 Setting left and right volumes

2-32

FUNCTI ON MySet Vol ure (chan: SndChannel Ptr): OSErr;

VAR
nmy SndCnd: SndCommand,;
myRi ght Vol : I nt eger;
nyLeft Vol : I nt eger;
myErr: OSErr;
BEG N
nyRi ght Vol := kFul | Vol une;
nyLeft Vol := kFull Volune DV 2;
mySndCnd. cmd : = vol umeCnd,
nySndCnd . paranml : = 0; {unused with vol uneCnd}

nmySndCnd. paran® : = BSL(nyRi ghtVol, 16) + nyLeft Vol ;
myErr : = SndDol nmredi at e(chan, nySndCnd);
MySet Vol urre : = nyErr;

END;

You can also use the vol umeCnd sound command to pan a sound from one side to
another. For example, to send the output signal entirely to the right channel, pass

the value $01000000 in par an®. To send the output signal entirely to the left channel,
pass the value $00000100 in par an?. You can overdrive a channel’s volume by passing
volume levels greater than $0100. For example, to play the left channel of a stereo
sound at twice full volume while playing the right channel at full volume, pass the
value $01000200.

You can use the Get SysBeepVol une and Set SysBeepVol ume functions to get and set
the output volume level of the system alert sound. Any calls to the SysBeep procedure
use the volume set by the previous call to Set SysBeepVol une. As you've learned, this
allows you to set a lower volume for the system alert sound than for your other sound
output.

You can use the Get Def aul t Qut put Vol une and Set Def aul t Qut put Vol une
functions to set the default output volumes for a particular output device. Each output
device has its own current volume setting and its own default setting. If the user changes
the output device (using the Sound control panel), the newly selected device will use its
own default volume level.

Obtaining Sound-Related Information

Developments in the sound hardware available on Macintosh computers and in the
Sound Manager routines that allow you to drive that hardware have made it imperative
that your application pay close attention to the sound-related features of the operating
environment. For example, some Macintosh computers do not have the sound input
hardware necessary to allow sound recording. Similarly, some other Macintosh
computers are not able to record sounds and play sounds simultaneously. Before taking

Using the Sound Manager

CONST

gestal t St ereoCapability
gestal t St er eoM xi ng

gest al t Soundl Ovgr Pr esent
gestal t Bui |l t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecord
gestal t 16Bi t Soundl O

gest al t St er eol nput =

CHAPTER 2

Sound Manager

advantage of a sound-related feature that is not available on all Macintosh computers,
you should check to make sure that the target machine provides the features you need.

To make appropriate decisions about the sound you want to produce, you might need to
know some or all of the following types of information:

» whether a machine can produce stereophonic sounds
» what version of the Sound Manager is available

» whether a machine can play multiple channels of sound, and whether it can take
advantage of the enhanced Sound Manager’s play-from-disk capabilities

» whether a sound playing from disk is active or paused
= how many channels of sound are currently open
» whether the system beep has been disabled

The following sections describe how to use the Gest al t function and Sound Manager
routines to determine these types of information.

Obtaining Information About Available Sound Features

You can use the Gest al t function to obtain information about a number of hardware-
and software-related sound features. For instance, you can use Gest al t to determine
whether a machine can produce stereophonic sounds and whether it can mix both left
and right channels of sound on the internal speaker. Many applications don’t need to call
Gest al t to get this kind of information if they rely on the Sound Manager’s ability to
produce reasonable sounding output on whatever audio hardware is available. Other
applications, however, do need to use Gest al t to get this information if they depend on
specific hardware or software features that are not available on all Macintosh computers.

To get sound-related information from Gest al t, pass it the gest al t SoundAt tr
selector.

CONST
gestal t SoundAttr = 'snd '; {sound attri butes}

If Gest al t returns successfully, it passes back to your application a 32-bit value that
represents a bit pattern. The following constants define the bits currently set or cleared
by Gestal t:

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recordi ng}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}

I
N ORWLEREO

Using the Sound Manager 2-33

Jabeuel\ punos n

gestal t 16Bi t Audi oSupport

CHAPTER 2

Sound Manager

gestal tLi neLevel | nput = 9; {built-in input hw needs line |evel}
gest al t SndPl ayDoubl eBuf fer = 10; {play fromdisk routines avail abl e}
gestal t Mul ti Channel s = 11; {mul tiple channel s of sound supported}

12; {16-bit audi o data support ed}

If the bit gest al t St er eoCapabi | i t y is TRUE, the built-in hardware can play stereo
sounds. The bit gest al t St er eoM xi ng indicates that the sound hardware of the
machine mixes both left and right channels of stereo sound into a single audio signal for
the internal speaker. Listing 2-9 demonstrates the use of the Gest al t function to
determine if a machine can play stereo sounds.

Listing 2-9 Determining if stereo capability is available

2-34

FUNCTI ON MyHasSt er eo: Bool ean;

VAR
myFeat ur e: Longl nt;
nmyErr: OSErr;
BEG N
nyErr := CGestalt(gestaltSoundAttr, mnyFeature);
| F nyErr = noErr THEN {test stereo capability bit}

MyHasSt ereo : = BTst (nyFeature, gestaltStereoCapability)
ELSE
MyHas St er eo

FALSE; {no sound features avail abl e}
END;

As shown in the chapter “Introduction to Sound on the Macintosh,” you can determine
whether your application can record by testing the gest al t HasSoundl nput Devi ce
bit. To determine whether a built-in sound input device is available, you can test the
gest al t Bui | t I nSoundl nput bit. The gest al t Soundl OMgr Pr esent bit indicates
whether the sound input routines are available. Because the

gest al t HasSoundl nput Devi ce bit is not set if the routines are not available, only
sound input device drivers should need to use the gest al t Soundl OMgr Pr esent bit.

For a complete description of the response bits set by Gest al t, see “Gestalt Selector and
Response Bits” beginning on page 2-90.

Obtaining Version Information

The Sound Manager provides functions that allow you to determine the version
numbers both of the Sound Manager itself and of the MACE compression and expansion
routines. Generally, you should avoid trying to determine which features or routines are
present by reading a version number. Usually, the Gest al t function (discussed in the
previous section) provides a better way to find out if some set of features, such as sound
input capability, is available. In some cases, however, you can use these version routines
to overcome current limitations of the information returned by Gest al t .

Using the Sound Manager

CHAPTER 2

Sound Manager

Both of these functions return a value of type NunVer si on that contains the same
information as the first 4 bytes of a resource of type ' ver s' . The first and second bytes
contain the major and minor version numbers, respectively; the third and fourth bytes
contain the release level and the stage of the release level. For most purposes, the major
and minor release version numbers are sufficient to identify the version. (See the chapter
“Finder Interface” of Inside Macintosh: Macintosh Toolbox Essentials for a complete
discussion of the format of ' vers' resources.)

You can use the SndSoundManager Ver si on function to determine which version of
the Sound Manager is present. Listing 2-10 shows how to determine if the enhanced
Sound Manager is available.

Listing 2-10 Determining if the enhanced Sound Manager is present

FUNCTI ON MyHasEnhancedSoundManager : Bool ean;

VAR
nmyVer si on: NunVer si on;

BEG N
| F MyTrapAvai | abl e(_SoundDi spat ch) THEN
BEG N

nmyVer si on : = SndSoundManager Ver si on;
MyHasEnhancedSoundManager : = myVersion. ngaj or Rev >= 2;
END
ELSE
MyHasEnhancedSoundManager : = FALSE
END;

The MyHasEnhancedSoundManager function defined in Listing 2-10 relies on the

M/Tr apAvai | abl e function, which is an application-defined routine provided in
Inside Macintosh: Operating System Utilities. If the _SoundDi spat ch trap is not available,
the SndSoundManager Ver si on function is not available either, in which case the
enhanced Sound Manager is certainly not available.

You can use the MACEVer si on function to determine the version number of the
available MACE routines (for example, Conp3t 01).

Testing for Multichannel Sound and Play-From-Disk Capabilities

The ability to play multiple channels of sound simultaneously and the ability to initiate
plays from disk were first introduced with the enhanced Sound Manager. Even with the
enhanced Sound Manager, however, these capabilities are present only on computers
equipped with suitable sound output hardware (such as an Apple Sound Chip). Sound
Manager version 3.0 defines 2 additional bits in the Gest al t response parameter that
allow you to test directly for these two capabilities.

Using the Sound Manager 2-35

Jabeuel\ punos n

CHAPTER 2

Sound Manager

CONST
gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

10; {play fromdi sk routines avail abl e}
11; {nultiple channels of sound supported}

Ideally, it should be sufficient to test directly, using Gest al t, for either multichannel
sound capability or play-from-disk capability. If your application happens to be running
under the enhanced Sound Manager, however, the two new response bits are not
defined. In that case, you'll need to test also whether the Apple Sound Chip is available,
because multichannel sound and play from disk are supported by the enhanced Sound
Manager only if the Apple Sound Chip is available. To test for the presence of the Apple
Sound Chip, you can use the Gest al t function with the gest al t Har dwar eAt t r
selector and the gest al t HasASCbit. Listing 2-11 combines these two tests into a single
routine that returns TRUE if the computer supports multichannel sound.

Listing 2-11 Testing for multichannel play capability

FUNCTI ON MyCanPl ayMul ti Channel s: Bool ean;

VAR
myResponse: Longl nt;
nyResul t : Bool ean;
nmyErr: CSErr;
ny\Ver si on: NunVer si on;
BEG N
nyResult := FALSE;

nyVer si on : = SndSoundManager Ver si on;
nmyErr := CGestalt(gestaltSoundAttr, myResponse);
| F myVer sion. maj or Rev >= 3 THEN
IF (myErr = noErr) AND (BTst(nyResponse, gestaltMiltiChannels)) THEN
nyResult := TRUE

ELSE
BEG N
nyErr := CGestalt(gestaltHardwareAttr, myResponse);
IF (nyErr = noErr) AND (BTst(nyResponse, gestaltHasASC)) THEN
nyResult := TRUE
END;
MyCanPl ayMul ti Channel s : = nyResult;
END;

The function MyCanPl ayMul ti Channel s first tries to get the desired information by
calling the Gest al t function with the gest al t SoundAt t r selector. If Gest al t
returns successfully and the gest al t Mul ti Channel s bit is set in the r esponse
parameter, then multichannel play capability is present. Notice that the multichannel bit
is checked only if the version of the Sound Manager is 3.0 or greater. If the version is not
at least 3.0, then MyCanPl ayMul ti Channel s calls the Gest al t function with the

2-36 Using the Sound Manager

CHAPTER 2

Sound Manager

gest al t Har dwar eAt t r selector. If the computer contains the Apple Sound Chip, then
again multichannel play capability is present.

Note

The gest al t HasASChbit is set only on machines that contain an Apple
Sound Chip. You should test for the presence of the Apple Sound Chip
only in the circumstances described above. O

You could write a similar function to test for the ability to initiate a play from disk.
Listing 2-12 shows an example.

Listing 2-12 Testing for play-from-disk capability

FUNCTI ON HasPl ayFr onDi sk: Bool ean;

Jabeuel\ punos n

VAR
myResponse: Longl nt ;
nyResul t: Bool ean;
nmyErr: OSErr;
nmy\Ver si on: NumVer si on;
BEG N
myResul t : = FALSE;

nmyVer si on : = SndSoundManager Ver si on;
nyErr := CGestalt(gestaltSoundAttr, myResponse);
I F nmyVersion. mjorRev >= 3 THEN
IF (nyErr = noErr) AND
(BTst (myResponse, gestalt SndPl ayDoubl eBuffer)) THEN
myResult : = TRUE

ELSE
BEG N
myErr := Gestalt(gestaltHardwareAttr, nyResponse);
IF (nyErr = noErr) AND (BTst(nyResponse, gestaltHasASC)) THEN
nyResult := TRUE
END;
HasPl ayFronDi sk : = nmyResul t;
END;

Obtaining Information About a Single Sound Channel

You can use the SndChannel St at us function to obtain information about a single
sound channel and about the status of a disk-based playback on that channel, if one
exists. For example, you can use SndChannel St at us to determine if a channel is being
used for play from disk, how many seconds of the sound have been played, and how
many seconds remain to be played.

Using the Sound Manager 2-37

CHAPTER 2

Sound Manager

One of the parameters required by the SndChannel St at us function is a pointer
to a sound channel status record, which you must allocate before calling
SndChannel St at us. A sound channel status record has this structure:

TYPE SCSt atus =

RECORD

scStart Ti ne: Fi xed; {starting time for play from di sk}
scEndTi ne: Fi xed; {ending tine for play from di sk}
scCurrent Ti nme: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE if channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}

scChannel Paused: Bool ean; {TRUE if channel is paused}
scUnused: Bool ean; {unused}

scChannel Attri butes: Longl nt; {attributes of this channel}
scCPULoad: Longl nt ; {CPU |l oad for this channel}

END;

2-38

The scSt art Ti me, scEndTi me, and scCur r ent Ti ne fields are 0 unless the Sound
Manager is currently playing from disk through the specified channel. If a play from
disk is occurring, the scSt art Ti ne and scEndTi e fields reflect the starting and
ending points of the play, defined in seconds; the scCur r ent Ti me field indicates the
number of seconds between the beginning of the sound on disk and the part of the
sound currently being played. The Sound Manager sets the values of the scSt art Ti ne
and scEndTi ne fields based on the values you set in an audio selection record. (See
page 2-100 for a description of the audio selection record.)

Note that because the Sound Manager might be playing only a selection of a sound, the
scCurrent Ti ne field does not reflect the number of seconds of sound play that have
elapsed. To compute the number of seconds of sound play elapsed, you can subtract the
value in the scSt ar t Ti ne field from that in the scCur r ent Ti ne field. However,
because the Sound Manager updates the value of the scCur r ent Ti e field only
periodically, you should not rely on the accuracy of its value.

The scChannel Busy and scChannel Paused fields reflect whether a channel is
processing commands and whether a channel is paused, respectively. After issuing
a series of sound commands, you can use these fields to determine if the channel
has finished processing all of the commands. If both scChannel Busy and
scChannel Paused are FALSE, the Sound Manager has processed all of the
channel’s commands.

You can mask out certain values in the scChannel At t ri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask
i ni t SRat eMask
i nitStereoMask

$0003; {mask for right/left pan val ues}
$0030; {mask for sanple rate val ues}
$00C0; {mask for nono/stereo val ues}

Using the Sound Manager

CHAPTER 2

Sound Manager

The scCPULoad field previously reflected the percentage of CPU processing power
used by the sound channel. However, this field is obsolete, and you should not rely
on its value.

Listing 2-13 illustrates the use of the SndChannel St at us function. It defines a function
that takes a sound channel pointer as a parameter and determines whether a disk-based
playback on that channel is paused.

Listing 2-13 Determining whether a sound channel is paused

FUNCTI ON MyChannel | sPaused (chan: SndChannel Ptr): Bool ean;

VAR

nmyErr: CSErr;

my SCSt at us: SCSt at us;
BEG N

MyChannel | sPaused : = FALSE;
nyErr := SndChannel St atus(chan, Sizeof (SCStatus), @rySCStatus);
| F nyErr = noErr THEN
MyChannel | sPaused : = mySCSt at us. scChannel Paused,;
END;

The function defined in Listing 2-13 simply reads the scChannel Paused field to see if
the playback is currently paused.

Note

In Sound Manager versions earlier than 3.0, pausing a sound channel by
issuing a pauseCnd command does not change the scChannel Paused
field. The scChannel Paused field is TRUE only if the Sound Manager
is executing a disk-based playback on the channel and that playback is
paused by the SndPauseFi | ePl ay function. This problem is fixed in
Sound Manager versions 3.0 and later. O

Obtaining Information About All Sound Channels

You can use the SndManager St at us function to determine information about all the
sound channels that are currently allocated by all applications. For example, you can use
this function to determine how many channels are currently allocated. One of the
parameters required by the SndManager St at us function is a pointer to a Sound
Manager status record, which you must allocate before calling SndManager St at us.

A Sound Manager status record has this structure:

TYPE SMst atus =
PACKED RECCRD

snmivaxCPULoad: I nt eger; {maxi mum | oad on all channel s}

smNuntChannel s: I nt eger; {nunber of allocated channel s}

smCur CPULoad: I nt eger; {current load on all channel s}
END;

Using the Sound Manager 2-39

Jabeuel\ punos n

CHAPTER 2

Sound Manager

The smNunmChannel s field contains the number of sound channels currently allocated.
This does not mean that the channels are actually being used, only that they have been
created with the SndNewChannel function and not yet disposed.

The Sound Manager uses information that it returns in the smvax CPULoad and

smCur CPULoad fields to help it determine whether it can allocate a new channel
when your application calls the SndNewChannel function. The Sound Manager sets
smvaxCPULoad to a default value of 100 at startup time, and the snCur CPULoad field
reflects the approximate percentage of CPU processing power currently taken by
allocated sound channels.

WARNING

Your application should not reply on the values returned in the
smvaxCPULoad and snCur CPULoad fields. To determine if it is safe to
allocate a channel, simply try to allocate it with the SndNewChannel
function. That function returns the appropriate result code if allocating
the channel would put too much of a strain on CPU processing. a

Listing 2-14 illustrates the use of SndManager St at us. It defines a function that returns
the number of sound channels currently allocated by all applications.

Listing 2-14 Determining the number of allocated sound channels

2-40

FUNCTI ON MyGet NuntChannel s: | nt eger;

VAR

myErr: CSErr;

my SMSt at us: SMVEt at us;
BEG N

MyGet NuntChannel s : = 0O;
nyErr := SndManager Status (Si zeof (SMst atus), @rySMst at us);
IF nyErr = noErr THEN
My CGet NunChannel s : = nySMst at us. snNuntChannel s;
END;

Determining and Changing the Status of the System Alert Sound

The enhanced Sound Manager includes two routines—SndGet SysBeepSt at e and
SndSet SysBeepsSt at e—that allow you to determine and alter the status of the system
alert sound. You might wish to disable the system alert sound if you are playing sound
and need to ensure that the sound you are playing is not interrupted. Currently, two
states are defined:

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

You can determine the status of the system alert sound like this:

Using the Sound Manager

CHAPTER 2

Sound Manager

SndCet SysBeepState(current State);
And you can disable the system alert sound like this:
nyErr : = SndSet SysBeepSt at e(sysBeepDi sabl e) ;

When the system alert sound is disabled, the Sound Manager effectively ignores all calls
to the SysBeep procedure. No sound is created and the menu bar does not flash. Also,
no resources are loaded into memory.

Note

Even when the system alert sound is enabled, it's possible that the
system alert sound will not play; for example, the speaker volume might
be set to 0, or playing the requested system alert sound might require
too much CPU time. In such a case, the menu bar flashes. O

By default, the system alert sound is enabled. If you disable the system alert sound so
that your application can play a sound without being interrupted, be sure to enable the
sound when your application receives a suspend event or when the user quits your
application.

Playing Notes

You can play notes one at a time by using the SndDoConmand or SndDol rmedi at e
function to issue f r eqDur at i onCnd sound commands. A sound plays for a specified
duration at a specified frequency. You can play sounds defined by any of the three sound
data formats. If you play wave-table data or sampled-sound data, then a voice must
previously have been installed in the channel. (See “Installing Voices Into Channels” on
page 2-43 for instructions on installing wave tables and sampled sounds as voices.)

You can also play notes by issuing the f r eqCnd command, which is identical to
the f r eqDur at i onCnd command, except that no duration is specified when you
issue f r eqCnd.

Note

AfreqDurationOrd command might in certain cases continue
playing until another command is available in the sound channel.
Therefore, to play a single note for a specified duration, you should
issue f r eqDur at i onCnd followed immediately by qui et Cnd.
See “Stopping Sound Channels” on page 2-28 for further details
onqui et Crd. O

The structure of a f r eqDur at i onCnd command is slightly different from that of most
other sound commands. The par ant field contains the duration of the sound, specified
in half-milliseconds. A value of 2000 represents a duration of 1 second. The maximum
duration is 32,767, or about 16 seconds, in Sound Manager versions 2.0 and earlier; the
maximum duration in Sound Manager version 3.0 and later is 65,536, or about

32 seconds. The par an® field specifies the frequency of the sound. The frequency is
specified as a MIDI note value (that is, a value defined by the established MIDI

Using the Sound Manager 2-41

Jabeuel\ punos n

CHAPTER 2

Sound Manager

standard). Listing 2-15 uses the f r eqDur at i onCnd command in a way that ensures the
sound stops after the specified duration.

Listing 2-15 Using the f r eqDur at i onCnd command

2-42

PROCEDURE MyPl ayFr equencyOnce (nySndChan: SndChannel Ptr;
nyM DI Val ue: | nteger;
mlliseconds: |nteger);

CONST

kNoWait = TRUE; {add now to full queue?}
VAR

nmy SndCnd: SndCommand,; {a sound conmand}

myErr: OSErr;
BEG N

{Start the sound playing.}
W TH nySndCnd DO

BEG N
cmd @ = freqDurati onCnd; {play for period of tine}
paraml := nilliseconds * 2; {hal f-mi|liseconds}
paran? : = rmyM DI Val ue; {M DI value to play}

END;

nyErr : = SndDoCommand(mySndChan, nySndCnd, NOT kNoWit);
IF nyErr <> noErr THEN
DoError (nyErr)

ELSE
BEG N {ensure that sound stops}
W TH nySndCnd DO
BEG N
cnd : = quietCnd, {stop playing sound}
paraml := O; {unused with qui et Cnd}
paranm? := O; {unused with qui et Cnd}
END;

nyErr : = SndDoCommand(mySndChan, nmySndCnd, NOT kNoWit);
IF nyErr <> noErr THEN
DoError (myErr);
END;
END;

Table 2-2 shows the decimal values that can be sent with a f r eqDur at i onCnd or
f r egCmd command. Middle C is represented by a value of 60 and is defined by a special
Sound Manager constant.

CONST
kM ddl eC = 60; {MDI note value for mddle C}

Using the Sound Manager

CHAPTER 2

Sound Manager

Other specifiable frequencies correspond to MIDI note values.

Table 2-2 Frequencies expressed as MIDI note values

A At B C C# D D# E F F# G G#
Octave 1 0 1 2 3 4 5 6 7 8
Octave 2 9 10 11 12 13 14 15 16 17 18 19 20
Octave 3 21 22 23 24 25 26 27 28 29 30 31 32
Octave 4 33 34 35 36 37 38 39 40 41 42 43 44
Octave 5 45 46 47 48 49 50 51 52 53 54 55 56
Octave 6 57 58 59 60 61 62 63 64 65 66 67 68
Octave 7 69 70 71 72 73 74 75 76 77 78 79 80
Octave 8 81 82 83 84 85 86 87 88 89 90 91 92
Octave 9 93 94 95 96 97 98 99 100 101 102 103 104
Octave 10 105 106 107 108 109 110 111 112 113 114 115 116
Octave 11 117 118 119 120 121 122 123 124 125 126 127

You can play square-wave and wave-table data at these frequencies only. If you are
playing a sampled sound, however, you can modify the sanpl eRat e field of the sound
header to play a sound at an arbitrary frequency. To do so, use the following formula:

new sample rate = (new frequency / original frequency) * original sample rate

where the new and original frequencies are measured in hertz. To convert a MIDI value
to hertz for use in this formula, note that middle C is defined as 261.625 Hz and that the
ratio between the frequencies of consecutive MIDI values equals the twelfth root of 2,
defined by the constant t wel f t hRoot Two.

CONST
t wel ft hRoot Two = 1. 05946309434,

IMPORTANT

When calculating with numbers of type Fi xed, pay attention to possible
overflows. The maximum value of a number of type Fi xed is 65,535.0.
As a result, some sample rates and pitches cannot be specified. Sound
Manager version 3.0 fixes these overflow problems. a

You can rest a channel for a specified duration by issuing ar est Cnd command. The
duration, specified in half-milliseconds, is passed in the par ani field of the sound
command.

Installing Voices Into Channels

You can play frequencies defined by any of the three sound data types. By playing a
frequency defined by wave-table or sampled-sound data, you can achieve a different

Using the Sound Manager 2-43

Jabeuel\ punos n

CHAPTER 2

Sound Manager

sound than by playing that same frequency using square-wave data. For example, you
might wish to play the sound of a dog’s barking at a variety of frequencies. To do that,
however, you need to install a voice of the barking into the sound channel to which you
want to send f r eqCnd or f r eqDur at i onCnd commands.

You can install a wave table into a channel as a voice by issuing the waveTabl eCrd
command. The par ant field of the sound command specifies the length of the wave
table, and the par an® field is a pointer to the wave-table data itself. Note that the Sound
Manager resamples the wave table so that it is exactly 512 bytes long.

You can install a sampled sound into a channel as a voice by issuing the soundCnd
command. You can either issue this command from your application or put it into an
"snd ' resource. If your application sends this command, par an® is a pointer to the
sampled sound locked in memory. If soundCnd is contained withinan' snd ' resource,
the high bit of the command must be set. To use a sampled-sound ' snd ' as a voice,
first obtain a pointer to the sampled sound header locked in memory. Then pass this
pointer in par an® of a soundCnd command. After using the sound, your application is
expected to unlock this resource and allow it to be purged.

Listing 2-16 demonstrates how you can use the soundCnd command to install a sampled
sound in memory as a voice in a channel.

Listing 2-16 Installing a sampled sound as a voice in a channel

FUNCTI ON Myl nst al | Sanpl edVoi ce (mySndHandl e: Handl e;

nySndChan: SndChannel Ptr): OSErr;

VAR

nmy SndCnd: SndCommand,; {a sound conmand}

ny SndHeader : SoundHeader Pt r; {sound header fromresource}
BEG N

{get pointer to sound header}

nySndHeader : = MyGet SoundHeader (mySndHandl e) ;
W TH nySndCnd DO

BEG N
cnd : = soundCnd; {install sanpled voice}
paraml := O; {ignored wth soundCnd}
paranm? := Longl nt (nySndHeader); {store sound header | ocation}
END;
| F nySndHeader = NIL THEN {check for defective handl e}
Ml nst al | Sanpl edVoi ce : = badFor nat
ELSE {install sound as voice}
Myl nst al | Sanpl edVoi ce : = SndDol nmedi at e(mySndChan, mySndCnd) ;
END;
Listing 2-16 relies on the MyGet SoundHeader function to obtain a pointer to the sound
header within the sound handle. That function is defined in “Obtaining a Pointer to a
2-44 Using the Sound Manager

CHAPTER 2

Sound Manager

Sound Header” on page 2-57 and returns N L if the sound handle does not include a
sound header. Note that the My Get SoundHeader function locks the sound handle in
memory so that the pointer to the sound header remains valid. When you are done with
the sound channel in which you have installed the sampled sound, you should unlock
the sound handle and make it purgeable so that it does not waste memory.

Looping a Sound Indefinitely

If you install a sampled sound as a voice in a channel and then play the sound using
afreqCndorfreqDurati onCnd command that lasts longer than the sound, the
sound will ordinarily stop before the end of the time specified by the f r eqCnd or

f reqDur at i onCnd command. Sometimes, however, this might not be what you’d like
to have happen. For example, you might have recorded the sound of a violin playing
and then stored that sound in a resource so that you could play the sound of a violin at
a number of different frequencies. Although you could record the sound so that it is
long enough to continue playing through the longest f r eqCnd or f r eqDur at i onCnd
command that your application might require, this might not be practical. Fortunately,
the Sound Manager provides a mechanism that allows you to repeat sections of sampled
sound after the sound has finished playing once completely.

Jabeuel\ punos n

When you use the f r eqDur at i onCd command with a sampled sound as the voice,

f reqDur at i onOnd starts at the beginning of the sampled sound. If necessary to achieve
the desired duration of sound, the command replays that part of the sound that is
between the loop points specified in the sampled sound header. Note that any sound
preceding or following the loop points will not be replayed. There must be an ending
point for the loop specified in the header in order for f r eqDur at i onCnd to work

properly.

Listing 2-17 Looping an entire sampled sound

PROCEDURE MyDolLoopEnti reSound (sndHandl e: Handl e) ;

VAR
nmy SndHeader : SoundHeader Pt r; {sound header from resource}
nyTot al Bytes: Longlnt; {bytes of data to | oop}

BEG N

nmySndHeader := MyGet SoundHeader (sndHandl e) ;
| F nySndHeader <> NI L THEN
BEG N {comput e bytes of sound dat a}
CASE nySndHeader ~. encode OF
st dSH: {standard sound header}
W TH ny SndHeader DO
nyTot al Byt es : = nySndHeader ™. | engt h;
ext SH: {ext ended sound header}
W TH Ext SoundHeader Pt r (nySndHeader)~ DO
nmyTot al Byt es : = nunChannel s * nunfranes * (sanpleSize DV 8);
cnpSH: {conpressed sound header}

Using the Sound Manager 2-45

CHAPTER 2

Sound Manager

W TH CnmpSoundHeader Pt r (nySndHeader)~ DO
myTot al Bytes : = numChannel s * nunfranes * (sanpleSize DIV 8);

END;
W TH nySndHeader* DO
BEG N {set | oop points}

| oopStart := 0; {start with first byte}

| oopEnd : = nmyTotal Bytes - 1; {end with |last byte}
END;

END;

END;

2-46

Listing 2-17 uses the MyGet SoundHeader function defined in “Obtaining a Pointer to a
Sound Header” on page 2-57. Note that the formula for computing the length of a sound
depends on the type of sound header. Also, while the formula is the same for both an
extended and a compressed sound header, you must write code that differentiates
between the two types of sound headers because the sanpl eSi ze field is not stored in
the same location in both sound headers.

Playing Sounds Asynchronously

The Sound Manager currently allows you to play sounds asynchronously only if you
allocate sound channels yourself, using techniques described in “Managing Sound
Channels” on page 2-19. But if you use such a technique, your application will need to
dispose of a sound channel whenever the application finishes playing a sound. In
addition, your application might need to release a sound resource that you played on a
sound channel.

To avoid the problem of not knowing when to dispose of a sound channel playing a
sound asynchronously, your application could simply allocate a single sound channel
when it starts up (or receives a resume event) and dispose of the channel when the user
quits (or the application receives a suspend event). However, this solution will not work
if you need to release a resource when a sound finishes playing. Also, you might not
want to keep a sound channel allocated when you are not using it. For instance, you
might want to use the memory taken up by a sound channel for other tasks when no
sound is playing.

Your application could call the SndChannel St at us function once each time through its
main event loop to determine if a channel is still making sound. When the scBusy field
of the sound channel status record becomes FALSE, your application could then dispose
of the channel. This technique is easy, but calling SndChannel St at us frequently uses
up processing time unnecessarily.

The Sound Manager provides other mechanisms that allow your application to find out
when a sound finishes playing, so that your application can arrange to dispose of sound
channels no longer being used and of other data (such as a sound resource) that you no
longer need after disposing of a channel. If you are using the SndPl ay function or
low-level commands to play sound in a channel, then you can use callback procedures. If
you are using the SndSt ar t Fi | ePl ay function to play sound in a channel, then you

Using the Sound Manager

CHAPTER 2

Sound Manager

can use completion routines. The following sections illustrate how to use callback
procedures and completion routines.

Note

Callback procedures are a form of completion routine. However, for
clarity, this section uses the terminology “completion routine” only for
the routines associated with the SndSt art Fi | ePl ay function. O

Using Callback Procedures

This section shows how you can use callback procedures to play one sound
asynchronously at a given time. “Managing Multiple Sound Channels” on page 2-53
expands the techniques in this section to show how you can play several asynchronous
sounds simultaneously.

Jabeuel\ punos n

The SndNewChannel function allows you to associate a callback procedure with a
sound channel. For example, the following code opens a new sound channel for which
memory has already been allocated and associates it with the callback procedure
MyCal | Back:

myErr : = SndNewChannel (gSndChan, sanpl edSynth, initMno, @WCall back);

After filling a channel created by SndNewChannel with various commands to create
sound, you can then issue a cal | BackCrd command to the channel. When the Sound
Manager encounters a cal | BackCnd command, it executes your callback procedure.
Thus, by placing the cal | BackCnd command last in a channel, you can ensure that the
Sound Manager executes your callback procedure only after it has processed all of the
channel’s other sound commands.

Note

Be sure to issue cal | BackCnd commands with the SndDoConmmand
function and not the SndDol nmedi at e function. If you issue a

cal | BackOmd command with SndDol nmedi at e, your callback
procedure might be called before other sound commands you have
issued finish executing. O

A callback procedure has the following syntax:
PROCEDURE MyCal | Back (chan: SndChannel Ptr; cnd: SndCommand);

Because the callback procedure executes at interrupt time, it cannot access its application
global variables unless the application’s A5 world is set correctly. (For more information
on the A5 world, see the chapter “Memory Management Utilities” in Inside Macintosh:
Memory.) When called, the callback procedure is passed two parameters: a pointer to the
sound channel that received the cal | BackCnd command and the sound command that
caused the callback procedure to be called. Applications can use par aml or par an® of
the sound command as flags to pass information or instructions to the callback
procedure. If your callback procedure is to use your application’s global data storage, it
must first reset A5 to your application’s A5 and then restore it on exit. For example,
Listing 2-18 illustrates how to set up a cal | BackCrd command that contains the

Using the Sound Manager 2-47

CHAPTER 2

Sound Manager

required A5 information in the par an® field. The Myl nst al | Cal | back function
defined there must be called at a time when your application’s A5 world is known
to be valid.

Listing 2-18 Issuing a callback command

FUNCTI ON Myl nstal | Cal | back (nySndChan: SndChannel Ptr): OSErr

CONST

kWai t1fFull = TRUE; {wait for roomin queue}

VAR

ny SndCnd: SndCommand,; {a sound conmand}

BEG N

W TH mySndCmd DO

BEG N
cmd

: = cal | BackCnd; {install the call back conmand}

paraml : = kSoundConpl ete; {last command for this channel}

parant :

END;

Set Cur r ent A5; {pass the call back the A5}

Myl nstal | Cal | back : = SndDoCommand(nySndChan, mnmySndCrd, kWaitlfFull)

END;

In this function, kSoundConpl et e is an application-defined constant that indicates that
the requested sound has finished playing. You could define it like this:

CONST
kSoundConpl et e = 1; {sound is done pl ayi ng}

Because par an? of a sound command is a long integer, Listing 2-18 uses it to pass the
application’s A5 to the callback procedure. That allows the callback procedure to gain
access to the application’s A5 world.

Note

You can also pass information to a callback routine in the user | nf o
field of the sound channel. O

The sample callback procedure defined in Listing 2-19 can thus set A5 to access the
application’s global variables.

Listing 2-19 Defining a callback procedure

2-48

PROCEDURE MyCal | back (theChan: SndChannel Ptr; theCnd: SndConmand);
VAR

myA5: Longl nt ;
BEG N

| F theCrd. paraml = kSoundConpl et e THEN

Using the Sound Manager

CHAPTER 2

Sound Manager

BEG N
myA5 : = Set A5(t heCrd. par anR) ; {set ny A5}
gCal | backPerfornmed : = TRUE; {set a global flag}
nmyA5 : = Set A5(myA5); {restore the original A5}
END;
END;
WARNING

Callback procedures are called at interrupt time and therefore must
not attempt to allocate, move, or dispose of memory, dereference
an unlocked handle, or call other routines that do so. Also,
assembly-language programmers should note that a callback
procedure is a Pascal procedure and must preserve all registers
other than A0-A1 and DO-D2. a

Callback procedures cannot dispose of channels themselves, because that involves
disposing of memory. To circumvent this restriction, the callback procedure in Listing
2-19 simply sets the value of a global flag variable that your application defines. Then,
once each time through its main event loop, your application must call a routine that
checks to see if the flag is set. If the flag is set, the routine should dispose of the channel,
release any other memory allocated specifically for use in the channel, and reset the flag
variable. Listing 2-20 defines such a routine. Your application should call it once each
time through its main event loop.

Listing 2-20 Checking whether a callback procedure has executed

PROCEDURE MyCheckSndChan;

CONST

kQui et Now = TRUE; {need to qui et channel ?}
VAR

myErr: OSErr;
BEG N

| F gCal | backPer f or med THEN {check gl obal fl ag}

BEA N {channel is done}

gCal | backPerformed := FALSE, {reset global flag}
| F gSndChan”. userinfo <> 0 THEN
BEA N {rel ease sound dat a}
HUnl ock(Handl e(gSndChan”. user | nfo));
HPur ge(Handl e(gSndChan”. user I nfo));

END;

myErr := MyDi sposeSndChannel (gSndChan, kQui et Now) ;

gSndChan : = NIL; {set pointer to N L}
END;

END;

Using the Sound Manager 2-49

Jabeuel\ punos n

CHAPTER 2

Sound Manager

The MyCheckSndChan procedure defined in Listing 2-20 checks the user | nf o field of
the sound channel to see if it contains the address of a handle. Thus, if you would like
the MyCheckSndChan procedure to release memory associated with a sound handle,
you need only put the address of the handle in the user | nf o field of the sound channel.
(If you do not want the MyCheck SndChan procedure to release memory associated with
a handle, then you should set the user | nf o field to 0 when you allocate the channel.
The MyCr eat eSndChannel function defined in Listing 2-1 on page 2-20 automatically
sets this field to 0.) After releasing the memory associated with the sound handle, the
MyCheckSndChan procedure calls the MyDi sposeSndChannel function (defined in
Listing 2-3 on page 2-25) to release the memory occupied by both the sound channel and
the sound channel record.

To ensure that the MyCheckSndChan procedure defined in Listing 2-20 does not
attempt to dispose a channel before you have created one, you should initialize the
gCal | backPer f or med variable to FALSE. Also, you should initialize the gSndChan
variable to NI L, so that other parts of your application can check to see if a sound is
playing simply by checking this variable. For example, if your application must play a
sound but another sound is currently playing, you might ensure that the application
gives priority to the newer sound by stopping the old one. Listing 2-21 defines a
procedure that stops the sound that is playing.

Listing 2-21 Stopping a sound that is playing asynchronously

PROCEDURE My St opPl ayi ng;

BEG N
| F gSndChan <> NI L THEN {is sound really playing?}
gCal | backPerformed : = TRUE; {set gl obal flag}
My CheckSndChan; {call routine to do disposing}
END;

Once you have defined a callback procedure, a routine that installs the callback
procedure, a routine that checks the status of the callback procedure, and a routine that
can stop sound play, you need only allocate a sound channel, call the SndP!l ay function,
and install your callback procedure to start an asynchronous sound play. Listing 2-22
defines a procedure that starts an asynchronous play.

Listing 2-22 Starting an asynchronous sound play

PROCEDURE MyStart Pl ayi ng (nySndl D: | nteger);

CONST
kAsync = TRUE; {play is asynchronous}

VAR
nmy SndHandl e: Handl e; {handle to an 'snd ' resource}
nmyErr: CSErr;

BEG N

2-50 Using the Sound Manager

CHAPTER 2

Sound Manager

| F gSndChan <> NI L THEN {check if channel is active}
My St opPl ayi ng;
gSndChan : = MyCreat eSndChannel (0, 0, @#Call backProc, stdQ.ength);
nySndHandl e : = Get Resource('snd ', nySndlD);
I F (nySndHandl e <> NIL) AND (gSndChan <> NI L) THEN
BEG N {start sound pl ayi ng}
Det achResour ce(nySndHandl e) ; {detach resource fromfile}
{remenber to rel ease sound handl e}
gSndChan”. userInfo := Longlnt(nySndHandl e);
HLock(mySndHandl e) ; {lock the resource data}
myErr := SndPl ay(gSndChan, mySndHandl e, kAsync);
I F nyErr = noErr THEN
nyErr := Mylnstall Cal | back(gSndChan) ;
IF nyErr <> noErr THEN
DoError (nyErr);

Jabeuel\ punos n

END;
END;

The MySt ar t Pl ayi ng procedure uses the MyCr eat eSndChannel function defined

in Listing 2-1 to create a sound channel, requesting that the function allocate a
standard-sized sound channel command queue. By using such a queue, you can be

sure that your application can play any sound resource that contains up to 127 sound
commands. If you are sure that your application will play only sampled-sound resources
created by the Sound Input Manager, you should request a queue of only two sound
commands, thereby leaving enough room for just the buf f er Cmd command contained
within the sound resource and the cal | BackCnd command that your application issues.

Before playing the sound, the MySt ar t Pl ayi ng procedure defined in Listing 2-22
detaches the sound resource from its resource file after loading it. This is important if
the resource file could close while the sound is still playing, or if your application
might create another sound channel to play the same sound resource while the sound
is still playing.

Synchronizing Sound With Other Actions

If your application uses callback procedures to play sound asynchronously, you might
wish to synchronize sound play with other activity, such as an onscreen animation.

Callback procedures allow your application to do that by using different constant values
in the par aml field of the callback command. For example, you could define a constant
kFi r st SoundFi ni shed to signal to your application that the first of a series of sounds
has finished playing. Then, your callback procedure could set an appropriate global flag
depending on whether the par ant field equals kFi r st SoundFi ni shed,
kSoundConpl et e, or some other constant that your application defines. Finally, a
procedure that you call once each time through your application’s event loop could
check to see which of the various global flag variables are set and respond appropriately.
Meanwhile, sound continues to play.

Using the Sound Manager 2-51

CHAPTER 2

Sound Manager

Managing an Asynchronous Play From Disk

The Sound Manager allows you to play a sound file asynchronously with the

SndSt ar t Fi | ePl ay function by defining a completion routine that sets a global flag to
alert the application to dispose of the sound channel when the sound is done playing.
Completion routines are thus similar to callback procedures, but they are easier to use in
that you do not need to install them. The Sound Manager automatically executes them
when a play from disk ends, whether it has ended because the application called the
SndSt opFi | ePl ay function, because the application disposed of the sound channel in
which the sound was playing, or because the sound has finished playing.

You define a completion routine like this:
PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);

Note that unlike callback procedures, completion routines have only one parameter, a
pointer to a sound channel. Thus, for the completion routine to set the application’s A5
world properly, you should pass the value of the application’s A5 in the user | nf o field
of the sound channel, like this:

gSndChan”. userInfo := Set CurrentA5;

Then your completion routine can look in the user | nf o field of the sound channel to
set A5 correctly before it can access any application global variables. Listing 2-23 defines
a completion routine that sets A5 correctly.

Listing 2-23 Defining a completion routine

2-52

PROCEDURE MySoundConpl eti onRouti ne (chan: SndChannel Ptr);
VAR

my AS: Longl nt;
BEG N
nmyA5 : = Set A5(chan”. userl nfo); {set nmy A5}
gConpl eti onPerforned : = TRUE; {set a global flag}
myA5 : = Set A5(nmyA5); {restore the original A5}
END;

The completion routine defined in Listing 2-23 sets a global flag variable to indicate that
the completion routine has been called. To start a sound file playing, you can use a
routine analogous to that defined in Listing 2-22, but when allocating a sound channel,
you need only allocate a queue of a single sound command. You can than use a
procedure analogous to that defined in Listing 2-20 to check the flag once each time
through the application’s event loop and dispose of the sound channel if the flag is set.

If you do use the SndSt ar t Fi | ePl ay function to play sounds asynchronously, then
you can pause, restart, and stop play simply by using the SndPauseFi | ePl ay and
SndSt opFi | ePl ay functions.

Using the Sound Manager

CHAPTER 2

Sound Manager

You use SndPauseFi | ePl ay to temporarily suspend a sound from playing. If a sound
is playing and you call SndPauseFi | ePl ay, then the sound is paused. If the sound is
paused and you call SndPauseFi | ePl ay again, then the sound resumes playing.
Hence, the SndPauseFi | ePl ay routine acts like a pause button on a tape player, which
toggles the tape between playing and pausing. (You can determine the current state of a
play from disk by using the SndChannel St at us function. See “Obtaining Information
About a Single Sound Channel” on page 2-37 for more details.) Finally, you can use
SndSt opFi | ePl ay to stop the file from playing.

Playing Selections

The sixth parameter passed to the SndSt art Fi | ePl ay function is a pointer to an
audio selection record, which allows you to specify that only part of the sound be
played. If that parameter has a value different from NI L, then SndSt art Fi | ePl ay
plays only a specified selection of the entire sound. You indicate which part of the entire
sound to play by giving two offsets from the beginning of the sound, a time at which to
start the selection and a time at which to end the selection. Currently, both time offsets
must be specified in seconds.

Here is the structure of an audio selection record:

TYPE Audi oSel ection =
PACKED RECORD

uni t Type: Longl nt; {type of time unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng poi nt of selection}
END;

To play a selection, you should specify in the sel St art and sel End fields the starting
and ending point in seconds of the sound to play. Also, you must set the uni t Type field
to the constant uni t TypeSeconds.

If you wish to play an entire sound, you can simply pass NI L to the

SndSt art Fi | ePl ay function. Alternatively, you can set the uni t Type field to the
constant uni t TypeNoSel ect i on, in which case the values in the sel St art and
sel End fields are ignored.

Managing Multiple Sound Channels

If you are writing an application that can play multiple channels of sound on Macintosh
computers that support that feature, you can use the Sound Manager’s asynchronous
playing abilities, but you might encounter some special obstacles. The technique for
playing sounds asynchronously described in “Playing Sounds Asynchronously” on

page 2-46 has a limitation if you are using multiple sound channels. Using that technique
without modification, you would need to define each separate sound channel in a
different global variable, and you would need to use several global flags in your callback
procedure to signal which sound channels have finished processing sound commands.

Using the Sound Manager 2-53

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Although it is easy to modify the code in “Playing Sounds Asynchronously” to use
several flags, this solution might not be satisfactory for an application in which the
number of sound channels open can vary. For example, suppose that you are writing
entertainment software with dozens of sound effects that correspond to actions on the
screen and you wish to use the Sound Manager asynchronously so that several sound
effects can be played at once. It would be cumbersome to associate a separate global
sound channel variable with each sound and create a flag variable for each of these
sound channels. Also, you might wish to play the same sound simultaneously in two
separate channels. It would be better to write code that manages a global list of sound
channels and then provides a simple routine that allows you to add a channel to the list.
This section shows how you might implement such a list of sound channels. Listing 2-24
defines a data structure that you could use to track multiple sound channels.

Listing 2-24 Defining a data structure to track many sound channels

CONST
kMaxNunmsndChans = 20; {max numnber of sound channel s}
TYPE
SCinfo =
RECORD
sndChan: SndChannel Ptr; {NIL or pointer to channel}
nmust Di spose: Bool ean; {flag to di spose channel}
i tsData: Handl e; {data to dispose with channel}
END;
SCLi st = ARRAY[1. . kMaxNunSndChans] OF SCl nf o;
VAR
gSndChans: SCLi st ;

The SCI nf o data structure defined in Listing 2-24 allows you to keep track of which
channels in the collection are being used and which were being used but currently need
disposal; it also allows you to associate data with a sound channel so that you can
dispose of the data when you dispose of the sound channel. Note that the value of the
kMaxNurmSndChans constant might vary from application to application. Having
defined the data structure, you must initialize it (so that the sndChan and i t sDat a
fields are NI L and the nust Di spose field is FALSE). You must also write a procedure
that finds an available channel. You might declare such a procedure like this:

PROCEDURE DoTrackChan (chanToTrack: SndChannel Ptr; associ atedData: Handl e);

2-54

Using such a procedure, you could simply create sound channels by using local variables
and then add them to the tracking list so that your application disposes of them when
they finish executing. The exact implementation of such a procedure would depend on
the needs of your application. For example, if there are no channels available in the
global list of sound channels, your application might report an error, stop sound on all
active channels, or stop sound on the channel that has been playing the longest. If you
want your application to be compatible with computers that do not support

Using the Sound Manager

CHAPTER 2

Sound Manager

multichannel sound, this procedure could check whether multichannel sound is
supported, and if not, would stop any sound playing on other channels. This is
particularly useful if your application plays sound effects in response to actions on the
screen; overlapping sound effects sound best, but if this is unattainable, the newest
sound should have the highest priority.

One advantage of maintaining a list of sound channels is that you can use it in
conjunction with both callback procedures and completion routines. Listing 2-25 defines
a procedure that either your callback procedure or completion routine could call after
setting the application’s A5 world correctly.

Listing 2-25 Marking a channel for disposal

PROCEDURE My Set Tr ackChanDi spose (nySndChannel : SndChannel Ptr);
VAR

i ndex: I nt eger; {channel i ndex}
f ound: Bool ean; {flag vari abl e}
BEG N
i ndex := 1; {start at first spot}
found : = FALSE; {initialize flag vari abl e}

WHI LE (index <= kMaxNuntBndChans) AND (NOT found) DO
I F gSndChans[i ndex] . sndChan = nySndChannel THEN
found : = TRUE {proper channel found}
ELSE
index :=index + 1; {nove to next spot}
| F found THEN
gSndChans|[i ndex] . nust Di spose : = TRUE
END;

The final thing you need to do is to define a procedure that your application calls once
each time through its main event loop. This procedure must dispose of sound channels
that are marked for disposal. Listing 2-26 defines such a routine.

Listing 2-26 Disposing of channels that have been marked for disposal

PROCEDURE Myd eanUpTr ackedChans;

kQui et Now = TRUE; {need to quiet channel ?}
| nt eger;
CSErr;

FOR index := 1 TO kMaxNuntndChans DO {go through all channel s}

W TH gSndChans[i ndex] DO

Using the Sound Manager 2-55

Jabeuel\ punos n

END;

2-56

CHAPTER 2

Sound Manager

| F nust Di spose THEN {check gl obal fl ag}
BEG N {channel needs di sposal}

| F gSndChans[index].itsData <> NIL THEN
BEA N {rel ease other data}
HUNnl ock(gSndChans[i ndex] .itsDat a);
HPur ge(gSndChans[i ndex] . i t sDat a) ;
END;
{free channel -rel at ed nenory}
nyErr := MyDi sposeSndChannel (sndChan, kQui et Now);
sndChan := N L; {set pointer to N L}
nmust Di spose : = FALSE; {reset global flag}
I F nyErr <> noErr THEN
DoError (nyErr);

END;

The MyCl eanUpTr ackedChans procedure defined in Listing 2-26 works just like the
M/ CheckSndChan procedure defined in Listing 2-20, but instead of checking a single
global flag, it checks the flag associated with each allocated sound channel. Now that
you have defined such a procedure, you can easily write a routine to stop sound in all
active channels (for example, if your application receives a suspend event). Simply set
the nust Di spose flag on all sound channels that are allocated (that is for all channels
that are not NI L) and then call MyCl eanUpTr ackedChans. Note, however, that when
the Myl eanUpTr ackedChans procedure disposes of a sound channel processing a
play from disk, the completion routine will be called and will thus set the must Di spose
flag to TRUE. Thus, the must Di spose flag must be reset to FALSE after the sound
channel has been disposed. Otherwise, the MyCl eanUpTr ackedChans procedure
would try to dispose of the same sound channel again when the application called it
from its main event loop.

Parsing Sound Resources and Sound Files

This section explains how you can parse sound resources and sound files to find the
component of a sound resource or sound file that contains information about the sound.
For sound resources, this information is stored in the sound header. In addition to
obtaining information about a sound from a sound header, you might need a pointer to a
sound header to use any of several low-level sound commands. For sound files,
information is stored in the Form and Common Chunks. This section shows how you
can find those chunks and extract information from them.

Note

The techniques shown in this section assume that you are familiar with
the format of sound resources and sound files. See “Sound Storage
Formats” beginning on page 2-73 for complete information on sound
storage formats. O

Using the Sound Manager

CHAPTER 2

Sound Manager

Obtaining a Pointer to a Sound Header

This section shows how you can obtain a pointer to a sound header stored in a sound
resource. You can use this pointer to obtain information about the sound. You also need a
pointer to a sound header to install a sampled sound as a voice in a channel (as
described in “Installing Voices Into Channels” on page 2-43) and to play sounds using
low-level sound commands (as described below and in the next section). You can use a
technique similar to the one described in this section if you wish to obtain a pointer to
wave-table data that is stored in a sound resource.

Sound Manager versions 3.0 and later include the Get SoundHeader O f set function
that you can use to locate a sound header embedded in a sound resource. Listing 2-27
shows how to call the Get SoundHeader O f set function and then pass the returned
offset to the buf f er Cnd sound command, to play a sampled sound using low-level
Sound Manager routines.

Jabeuel\ punos n

Listing 2-27 Playing a sound resource

FUNCTI ON MyPl aySanpl edSound (chan: SndChannel Ptr; sndHandl e: Handl e): OSErr;
VAR

nyCor f set : Longl nt;
nmy SndCnd: SndCommand,; {a sound conmand}
nmyErr: CSErr;

BEG N

nyErr := Get SoundHeader O f set (sndHandl e, nmyOffset);
IF nyErr = noErr THEN

BEG N
HLock(sndHandl e) ;
nmySndCnd. cnd : = buffer Cnd; {command is bufferCnd}
nySndCnd. paranil : = 0; {unused wi th buffer Cnd}

nmySndCnd. paran? : = Longl nt (ORD4(sndHandl e®) + nmyOffset);
nyErr : = SndDol mredi at e(chan, mySndCnd) ;
END;
MyPl aySanpl edSound : = nyErr;
END;

If the Get SoundHeader Of f set function is not available but you still need to obtain a
pointer to a sound header, you can use the function MyGet SoundHeader Of f set
defined in Listing 2-28. The function defined there traverses a sound resource until it
reaches the sound data. It returns, in the of f set parameter, the offset in bytes from the
beginning of a sound resource to the sound header.

Using the Sound Manager 2-57

CHAPTER 2

Sound Manager

IMPORTANT

The Get SoundHeader O f set function is available in Sound Manager
versions 3.0 and later. As a result, you'll need to use the techniques
illustrated in Listing 2-28 only if you want your application to find

a sound header when earlier versions of the Sound Manager

are available. a

Listing 2-28 Obtaining the offset in bytes to a sound header

FUNCTI ON MyGet SoundHeader Of f set (sndHdl : Handl e; VAR offset: Longlint): OSErr
TYPE

SndlHeader = {format 1 '"snd ' resource header}
RECORD

format: I nt eger; {format of resource}

nunSynt hs: | nteger; {nunber of data types}

{synths, init option follow}

END;
SndlHdr Ptr = ~SndlHeader;
Snd2Header = {format 2 'snd ' resource header}
RECORD

format: I nt eger; {format of resource}

r ef Count : I nt eger; {for application use}
END;
Snd2Hdr Pt r = ~Snd2Header ;
IntPtr = ~Integer; {for type coercion}
SndCmdPt r = ~SndConmand; {for type coercion}

VAR
nmyPtr: Ptr; {to navi gate resource}
nyOf f set: Longl nt; {offset into resource}
nunBynt hs: I nt eger; {info about resource}
nuntCrrds: I nt eger; {info about resource}
i sDone: Bool ean; {are we done yet ?}
myErr: OSErr;
BEG N

{Initialize variables.}
nyOrfset = 0; {return 0 if no sound header found}
nyPtr := Ptr(sndHdl *); {point to start of resource data}
i sDone : = FALSE; {haven't yet found sound header}
nmyErr : = noErr,
{Skip everything before sound conmands. }
CASE SndiHdrPtr(myPtr)~. format OF

firstSoundFor mat : {format 1 'snd ' resource}

BEA N {skip header start, synth ID, etc.}

2-58 Using the Sound Manager

CHAPTER 2

Sound Manager

nunBSynt hs : = SndlHdr Pt r (myPtr) . nunSynt hs;
myPtr := Ptr(ORDA(nyPtr) + SizeO (SndlHeader));
nyPtr := Ptr(ORDA(nyPtr) +
nunBSynths * (SizeO (Integer) + SizeO (Longlnt)));

END;

secondSoundFor nat : {format 2 'snd ' resource}
nyPtr := Ptr(ORD4(nyPtr) + SizeO (Snd2Header));

OTHERW SE {unrecogni zed resource formnat}
BEG N

nyErr := badFornat;
i shone : = TRUE;
END;
END;

{Find nunber of conmands and nove to start of first conmand.}
nunCrrds ;= IntPtr(nyPtr)”;
myPtr .= Ptr(ORDA(nyPtr) + SizeO (Integer));

{Search for bufferCnd or soundCnd to obtain sound header.}
VWH LE (nunCnds >= 1) AND (NOT i sDone) DO
BEG N
IF (IntPtr(nyPtr)~ = bufferCrd + dataOfsetFlag) OR
(IntPtr(myPtr)~ = soundCrd + dataOf fsetFl ag) THEN
BEG N {bufferCrd or soundCnd found}
{copy offset from sound comand}

myOof fset (= SndCrdPtr (nyPtr) ", parant;

i shone : = TRUE; {get out of |oop}
END
ELSE
BEG N {soundCnd or bufferCrd not found}

{nove to next comuand}
myPtr := Ptr(ORDA(nyPtr) + SizeO (SndComand)) ;
nunCrds : = nunCnds - 1;

END;
END; {WH LE}
of fset := nyOFfset; {return offset}
My Get SoundHeader O f set : = nyErr; {return result code}

END;

The MyGet SoundHeader O f set function defined in Listing 2-28 begins by initializing
several variables, including a pointer that it sets to point to the beginning of the data
contained in the sound resource. Then, after determining whether the sound resource is

Using the Sound Manager 2-59

Jabeuel\ punos n

CHAPTER 2

Sound Manager

format 1 or format 2, the function skips data contained in the format1' snd ' resource
header or in the format2' snd ' resource header, as appropriate.

Note

Do not confuse the format 1 or format2' snd ' header with the sound
header the MyGet SoundHeader Of f set function defined in Listing
2-28 is designed to find. A sound header contains information about the
sampled-sound data stored in a sound resource; a sound resource
header contains information about the format of the sound resource. O

After skipping information in the sound resource header, MyGet SoundHeader Of f set
simply looks through all sound commands in the resource for a buf f er Crd or
soundCnd command, either of which must contain the offset from the beginning of the
resource to the sound header in its par an® field. If the given sound resource contains no
sound header (and thus no sampled-sound data), the MyGet SoundHeader Of f set
function returns an error and sets the of f set variable parameter to 0.

After using the MyGet SoundHeader Of f set function to obtain an offset to the sound
header, you can easily obtain a pointer to a sound header. Note, however, that because

a handle to a sound resource is contained in a relocatable block, you must lock the
relocatable block before you obtain a pointer to a sound header, and you must not
unlock it until you are through using the pointer. Listing 2-29 demonstrates how you can
convert an offset to a sound header into a pointer to a sound header after locking a
relocatable block.

Listing 2-29 Converting an offset to a sound header into a pointer to a sound header

FUNCTI ON MyGet SoundHeader (sndHandl e: Handl e): SoundHeader Ptr;

VAR
myo fset: Longl nt ; {of fset to sound header}
myErr: CSErr;
BEG N
HLockHi (sndHandl e) ; {l ock data in high nmenory}
{conpute offset to sound header}
nyErr : = MyGet SoundHeader O f set (sndHandl e, nmyOf fset);
IF nyErr <> noErr THEN
MyGet SoundHeader := N L {no sound header in resource}
ELSE
{comput e address of sound header}
MyGet SoundHeader : = SoundHeader Pt r (ORD4(sndHandl e®) + nmyOffset);
END;
The MyCGet SoundHeader function defined in Listing 2-29 locks the sound handle you
pass it in high memory and then attempts to find an offset to the sound header in the
sound handle. If the MyGet SoundHeader O f set function defined in Listing 2-28
returns an offset of 0, then MyGet SoundHeader returns a NI L pointer to a sound
2-60 Using the Sound Manager

CHAPTER 2

Sound Manager

header; otherwise, it returns a pointer that remains valid as long as you do not unlock
the sound handle.

The MyGet SoundHeader function returns a pointer to a sampled sound header even if
the sound header is actually an extended sound header or a compressed sound header.
Thus, before accessing any other fields of the sound header, you should test the encode
field of the sound header to determine what type of sound header it is. Then, if the
sound header is, for example, an extended sound header, cast the sampled sound header
to an extended sound header. Then you can access any of the fields of the extended
sound header. For an example of this technique, see Listing 2-16 on page 2-44.

Playing Sounds Using Low-Level Routines

Once you obtain a pointer to a sampled sound header, you can use the buf f er Cnd
sound command to play a sound without using the high-level Sound Manager routines.
Many sampled-sound resources include buf f er Omd commands, so the high-level
Sound Manager routines often issue the buf f er Cnd command indirectly. Thus, you
might in some cases be able to make your application slightly more efficient by issuing
the buf f er Cnd command directly. Also, you might issue a buf f er Cnmd command
directly if you want the Sound Manager to ignore other parts of a sound resource.

Finally, you might issue buf f er Cnd commands directly if you want your application to
be able to play a large sound resource without loading the entire resource at once. By
issuing several successive buf f er Cmd commands, you can play a large sound resource
using a small buffer. In this case, each buffer must contain a sampled sound header. In
most cases, the sound will play smoothly, without audible gaps. It's generally easier,
however, to play large sampled sounds from disk by using the play-from-disk routines
or the SndPl ayDoubl eBuf f er function. See “Managing Double Buffers” on page 2-147
for complete details.

Note

Using the buf f er Cnd command to play several consecutive
compressed samples on the Macintosh Plus, the Macintosh SE, or the
Macintosh Classic is not guaranteed to work without an audible pause
or click. O

The pointer in the par an? field of a buf f er Cmd command is the location of a sampled
sound header. A buf f er Omd command is queued in the channel until the preceding
commands have been processed. If the buf f er G command is contained within an
"snd ' resource, the high bit of the command must be set. If the sound was loaded in
froman' snd ' resource, your application is expected to unlock this resource and allow
it to be purged after using it. Listing 2-30 shows how your application can play a
sampled sound stored in a resource using the buf f er Cnd command.

Using the Sound Manager 2-61

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Listing 2-30 Playing a sound using the buf f er Cnd command

FUNCTI ON MyLowLevel Sanpl edSndPl ay (chan: SndChannel Ptr; sndHandl e: Handl e):

CSErr;
CONST
kWait I fFull = TRUE; {wait for roomin queue?}
VAR
nmy SndHeader : SoundHeader Pt r;
my SndCnd: SndConmand; {a sound comand}
BEG N

nySndHeader := MyGet SoundHeader (sndHandl e) ;
W TH nmySndCnd DO

BEG N
cnmd : = bufferCnd,; {command is bufferCnd}
paraml : = 0; {unused wi t h buffer Cnd}

paran® := Longl nt (nmySndHeader); {pointer to sound header}
END;
| F nySndHeader <> NI L THEN

MyLowLevel Sanpl edSndPl ay : =

SndDoConmand(chan, nySndCnd, NOT kWaitlfFull)

ELSE

MyLowLevel Sanmpl edSndPl ay : = badFor nat ;

END;

For the MyLowLevel Sanpl edSndPI ay function defined in Listing 2-30 to play a sound,
the channel passed to it must already be configured to play sampled-sound data.
Otherwise, the function returns a badChannel result code. Also, because the

buf f er Cnd command works asynchronously, you might want to associate a callback
procedure with the sound channel when you create the channel. For more information
on playing sounds asynchronously, see “Playing Sounds Asynchronously” on page 2-46.

You can use the buf f er Cnd command to handle compressed sound samples in addition
to sounds that are not compressed. To expand and play back a buffer of compressed
samples, you pass the Sound Manager a buf f er Cnd command where par an® points to
a compressed sound header.

To play sampled sounds that are not compressed, pass buf f er Cnd a standard or
extended sound header. The extended sound header can be used for stereo sampled
sounds. The standard sampled sound header is used for all other noncompressed
sampled sounds.

Finding a Chunk in a Sound File

Sound files are not as tightly structured as sound resources. As explained in “Sound
Files” on page 2-81, the chunks in a sound file can appear in any order, except that the
Form Chunk is always first. Most information about a sampled sound stored in a sound
file is contained in the Common Chunk. Thus, to be able to access this information, you

2-62 Using the Sound Manager

CHAPTER 2

Sound Manager

must be able to find a particular kind of chunk in a sound file. Listing 2-31 defines a
procedure that you can use to find the location of the first chunk of a specified type
beginning at the chunk you specify.

IMPORTANT

The techniques illustrated in this section are provided primarily to help
you understand the structure of sound files. Most sound-producing
applications don’t need to parse sound files. a

Listing 2-31 Finding a chunk in a sound file

Jabeuel\ punos n

FUNCTI ON MyFi ndChunk (nyFile: |nteger; {file reference nunber}
myChunkSought : 1D {1 D of chunk sought}
startPos: Longlnt; {file position to start at}
VAR chunkFPos: Longlnt) {file position of found chunk}
OSErr;
VAR
nyLengt h: Longl nt; {nunber of bytes to read}
myChunkHeader : ChunkHeader ; {characteristics of chunk}
f ound: Bool ean; {flag vari abl e}
nyErr: CSErr; {error fromFile Manager call s}
BEG N
found : = FALSE; {initialize flag vari abl e}

{set file mark at start}
Set FPos(nyFile, fsFrontStart, startPos);

nmyErr

{Search file's chunks for desired chunk I1D.}

VWH LE (NOT found) AND (nyErr = noErr) DO

BEG N {check current chunk}
nmyLength : = Si zeO (myChunkHeader) ;
{Load chunk header.}
nyErr := FSRead(nyFile, nyLength, @wyChunkHeader);

| F nyErr = noErr THEN {chunk header | oaded okay}
I F myChunkHeader . ckl D = myChunkSought THEN
BEG N
found : = TRUE; {chunk has been found}

{find position in file}
Get FPos(nyFi | e, chunkFPos);
{conpute chunk's start position}
chunkFPos : = chunkFPos - SizeO (myChunkHeader);
END
ELSE
BEG N {move to next chunk}
| F myChunkHeader . ckl D = I D{Form D) THEN

myErr

Using the Sound Manager 2-63

2-64

CHAPTER 2

Sound Manager

{Adj ust Form Chunk's size to size of fornfType field.}
myChunkHeader . ckSi ze := SizeO (I1D);
| F myChunkHeader . ckSize MOD 2 = 1 THEN
{Conpensate for pad byte.}
myChunkHeader . ckSi ze : = nmyChunkHeader. ckSi ze + 1;
nyErr := Set FPos(nyFile, fsFromvark, myChunkHeader.ckSize);

END;
END; {WH LE}
MyFi ndChunk : = nyErr;
END;

The MyFi ndChunk function defined in Listing 2-31 accepts four parameters. The

nmyFi | e parameter is the file reference number of an open sound file. (For information
on file reference numbers, see Inside Macintosh: Files.) In the my ChunkSought parameter,
you pass the ID of the type of chunk you wish to find. For example, you might pass

| D(For M D) to find the Form Chunk. The third parameter, st ar t Pos, is the file
position at which MyFi ndChunk should start searching for a chunk. This file position
must be the beginning of a chunk. To start at the beginning of a file, specify 0. Finally,
if the MyFi ndChunk function is successful, it returns in the chunkFPos parameter the
file position of the first chunk of the specified type that it found. If the function is
unsuccessful, it returns the appropriate File Manager result code (such as an end-of-file
error) and the chunkFPos parameter is undefined.

The MyFi ndChunk function works by looking at each chunk of the sound file, beginning
at the file position st ar t Pos and checking to see if the chunk is of the type sought. If a
chunk matches, the MyFi ndChunk function returns the file position of the start of the
chunk; otherwise, the function moves onto the next chunk. For each chunk, the

MyFi ndChunk function reads in the chunk header, checks for a match, and then moves
to the next chunk.

The MyFi ndChunk function moves from one chunk to the next by identifying the size of
the current chunk, not including the chunk header, from the ckSi ze field of the chunk
header. Whenever you parse sound files, you should always use the ckSi ze field of the
chunk header to determine the size of a chunk if the size of the chunk could vary in size.
The MyFi ndChunk function adjusts the value in the ckSi ze field before advancing to
the next chunk in two cases. First, the ckSi ze field for the Form Chunk reflects the size
of the entire sound file, so this function changes it to the size of the f or nilype field so
that the function does not skip the file’s local chunks. Second, if the ckSi ze field is odd,
1 byte is added because the number of bytes in a chunk is always even.

After using the MyFi ndChunk function defined in Listing 2-31, you might still need to
read the data contained in a chunk into memory. For example, you might read in the
Form and Common Chunks to obtain information about a sound file. Listing 2-32 uses
the MyFi ndChunk function to find a chunk in a sound file, allocates an appropriately
sized block of memory for that chunk, and reads the chunk into that block.

Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-32 Loading a chunk from a sound file

FUNCTI ON MyGet ChunkData (myFile: |nteger; {file reference nunber}
nyChunkSought : | D {ID of chunk sought}
startPos: Longint): {file position to start at}

Ptr; {pointer to data or NI L}
VAR
ny FPos: Longl nt; {position in file}
myLengt h: Longl nt ; {nunmber of bytes to read}
nyChunkHeader : ChunkHeader ; {characteristics of a chunk}
nmy ChunkDat a: Ptr; {pointer to chunk data}
nmyErr: OSErr;
BEG N
nmyChunkData : = N L; {initialize variabl e}

myErr = MyFi ndChunk(nmyFil e, myChunkSought, startPos, nyFPos);
I F nyErr = noErr THEN
{nove to start of chunk}
myErr := Set FPos(nyFile, fsFronStart, nyFPos);
I F nyErr = noErr THEN
BEA N {determ ne how nuch data to copy}
myLength : = Si zeOf (ChunkHeader) ;
nyErr := FSRead(nyFile, nyLength, @wyChunkHeader);
| F nyChunkHeader.ckl D = | D(Form D) THEN
myChunkHeader . ckSi ze := SizeO (I1D); {don't return |ocal chunks}
nyLength : = nyChunkHeader. ckSi ze + SizeOf (ChunkHeader);
IF nyErr = noErr THEN
{return to chunk's start}
nyErr := SetFPos(mnyFile, fsFronttart, myFPos);
END;
IF nyErr = noErr THEN
BEG N {read chunk data into RAM
nmyChunkDat a : = NewPtr (myLength);
| F myChunkData <> NI L THEN
nyErr := FSRead(mnyFile, myLength, myChunkDat a);
END;
IF nyErr <> noErr THEN
| F myChunkData <> NI L THEN
Di sposePt r (myChunkDat a) ;
MyGet ChunkDat a : = myChunkDat a;
END;

The MyGet ChunkDat a function defined in Listing 2-32 attempts to find a chunk in a file.
If it finds the chunk, it reads the chunk header to determine the chunk’s size, and if the
chunk is the Form Chunk, adjusts the chunk size so that the sound file’s local chunks are

Using the Sound Manager 2-65

Jabeuel\ punos n

2-66

CHAPTER 2

Sound Manager

not included in the chunk size. Then the function attempts to allocate memory for the
chunk and read the chunk into the memory. If a problem occurs at any time, the function
simply returns NI L.

Note

The format of a sound file might not be the same as its operating-system
type. In particular, a file might have an operating-system type ' Al FC
but be formatted as an AIFF file because the sampled-sound data
contained in the file is noncompressed. O

Compressing and Expanding Sounds

Some of the capabilities provided by MACE are transparently available to your
application. For example, if you pass the SndPl ay function a handle to an' snd '
resource that contains a compressed sampled sound, the Sound Manager automatically
expands the sound data for playback in real time. Your application does not need to
know whether the ' snd ' resource contains compressed or noncompressed samples
when it calls SndPl ay. This is because sufficient information is in the resource itself to
allow the Sound Manager to determine whether it should expand the data samples.

However, aside from expansion playback, all of the MACE capabilities need to be
specifically requested by your application. For example, you can use the procedure
Conp3t 01 or Conp6t 01 if you want to compress a sampled sound (for example, to
create an' snd ' resource containing compressed audio data). You can use the
procedures Explt 03 and Explt 06 to expand compressed audio data.

All of these procedures require you to specify both an input and an output buffer,
from and to which the sampled-sound data to be converted is read and written. Your
application must allocate the appropriate amount of storage for each buffer. For
example, if you want to expand a buffer of compressed monophonic sampled-sound
data by using Exp1t 06, the output buffer must be at least six times the size of the
input buffer.

The MACE compression and expansion routines can work on only one channel of sound.
The nuntChannel s parameter of all four procedures allows you to specify how many
channels are in the original sample, and the whi chChannel parameter allows you to
specify which channel you wish to compress or expand. Because the MACE routines can
compress or expand only one channel of sound, you must make adjustments when
allocating an output buffer for stereo sound. For example, if you are compressing
two-channel sound using the Conp3t 01 procedure, your output buffer need only be
one-sixth the size of your input buffer.

Often when compressing polyphonic sound, being able to compress only one channel is
not a problem, because you lose sound quality during compression anyway. However,
you might at times wish to maintain more than one channel of a multichannel sound
even after compression and expansion. For example, two channels of a stereo sound
might be quite different and might both be necessary to achieve a full sound after
expansion. In these cases, you can compress each channel of a multichannel sound
individually and then manually interleave the samples on a packet basis. When you

Using the Sound Manager

CHAPTER 2

Sound Manager

expand polyphonic compressed sound data, you must interleave the channels of sound
on a sample frame basis.

The MACE routines work only with sampled-sound data in offset binary format. If you
are compressing data in a sound file, you must convert that data from linear, two’s
complement format to binary offset format before compression.

When calling the MACE routines, you can also specify addresses of two small buffers
(128 bytes each) that the Sound Manager uses to maintain state information about the
compression or expansion process. When you first call a MACE routine, the state buffers
should be filled with zeros to initialize the state information. When you subsequently
call another MACE routine, you can use the same state buffers. You can pass NI L for
both buffers if you do not want to save state information across calls to the MACE
routines. Listing 2-33 illustrates the use of the Conp3t 01 procedure when using

state buffers.

Listing 2-33 Compressing audio data

PROCEDURE MyConpressBy3 (inBuf: Ptr; outBuf: Ptr; nunSanp: Longlnt);
CONST
kSt at eBuf fer Si ze = 128;

VAR
nyl nSt at e: Ptr; {input state buffer}
nmyQut St at e: Ptr; {output state buffer}
BEG N

nylnState : = NewPtrC ear (kSt at eBuf fer Si ze) ;
myQut State : = NewPtrd ear (kSt at eBuf f er Si ze);
IF (mylnState <> NIL) AND (myQutState <> NIL) THEN
Comp3t o1(i nBuf, outBuf, nunmBanp, nylnState, myQutState, 1, 1);
END;

Because the last two parameters (nunChannel s and whi chChannel) are both set to 1,
My Conpr essBy 3 compresses monophonic audio data.

In practice, compressing a sound resource or sound file is considerably more complex
than calling the MyConpr essBy 3 procedure defined in Listing 2-33. To compress a
sound resource containing monophonic sampled-sound data, you would need to

» load the data into a handle and lock the handle

» ensure that the data in the handle is not already compressed by examining the sound
header

» find a pointer to the sampled-sound data by examining the sanpl ePt r field of the
sound header

= allocate an output buffer of the appropriate size, taking into account that only one
channel of the original data can be compressed

= compress the sampled-sound data by calling the Conp3To1 procedure

Using the Sound Manager 2-67

Jabeuel\ punos n

2-68

CHAPTER 2

Sound Manager

= determine the size that the header information (including, for example, sound
commands and the sampled sound header excluding the sampled-sound data itself)
will take in the resource by using the Sound Input Manager’s Set upSndHeader
function to create a sound resource header and sampled sound header with the
same sample rate, base frequency, and other characteristics as the original
sampled-sound data

= resize the handle so that it is large enough to contain both the non-sampled-sound
data information and the compressed sound data

= fill this handle by first calling Set upSndHeader once again and by then copying the
compressed sound data to the end of the header information

= update the resource file

Techniques for compressing sound files and for expanding both sound resources and
sound files are analogous to that sketched here. Remember that after compressing or
expanding each channel of polyphonic sampled-sound data, you must interleave frames
of sound data, on a packet basis after compression or on a sample basis after expansion.

Using Double Buffers

The play-from-disk routines make extensive use of the SndPl ayDoubl eBuf f er
function. You can use this function in your application directly if you wish to bypass the
normal play-from-disk routines. You might want to do this to maximize the efficiency of
your application while maintaining compatibility with the Sound Manager. Or, you
might define your own double-buffering routines so that your application can convert
16-bit sound data on disk to 8-bit data that all versions of the Sound Manager can play.
By using SndPl ayDoubl eBuf f er instead of the normal play-from-disk routines, you
can specify your own doubleback procedure (that is, the algorithm used to switch back
and forth between buffers) and customize several other buffering parameters.

IMPORTANT

SndPl ayDoubl eBuf f er is a very low-level routine and is not intended
for general use. In most cases, you should use the high-level Sound
Manager routines (such as SndPl ay or SndSt art Fi | ePl ay) or
standard sound commands (such as buf f er Cnrd) to play sounds.

You should use SndPl ayDoubl eBuf f er only if you require very

fine control over double buffering. Remember also that the

SndPI ayDoubl eBuf f er function is not always available. You'll need
to ensure that it’s available in the current operating environment before
calling it. See “Testing for Multichannel Sound and Play-From-Disk
Capabilities” beginning on page 2-35 for details. a

You call SndPl ayDoubl eBuf f er by passing it a pointer to a sound channel (into which
the double-buffered data is to be written) and a pointer to a sound double buffer header
record. Here’s an example:

myErr := SndPl ayDoubl eBuf f er (mySndChan, @ryDoubl eHeader);

A sound double buffer header record has the following structure:

Using the Sound Manager

CHAPTER 2

Sound Manager

TYPE SndDoubl eBuf f er Header =
PACKED RECORD

dbhNunChannel s: I nt eger; {nunmber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpressi onl D. | nteger; {1 D of conpression algorithn
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBufferPtr: ARRAY[0. .1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}

END;

The values for the dbhConpr essi onl D, dbhNuntChannel s, and dbhPacket Si ze
fields are the same as those for the conpr essi onl D, nuntChannel s, and packet Si ze
fields of the compressed sound header, respectively.

The dbhBuf f er Pt r array contains pointers to two records of type SndDoubl eBuf f er.
These are the two buffers between which the Sound Manager switches until all

the sound data has been sent into the sound channel. When the call to

SndPl ayDoubl eBuf f er is made, the two buffers should both already contain

a nonzero number of frames of data.

IMPORTANT

The Sound Manager defines the data type SndDoubl eBuf f er Header 2
that is identical to the SndDoubl eBuf f er Header data type except that
it contains the dbhFor mat field (of type OSType) that defines a custom
codec to be used to decompress the sound data. The dbhFor mat field is
used only if the dbhConpr essi onl Dfield contains the value

fi xedConpr essi on. See “Sound Double Buffer Header Records”
beginning on page 2-111 for details. a

Here is the structure of a sound double buffer:

TYPE SndDoubl eBuf fer =
PACKED RECORD

dbNuntr anes: Longl nt; {nunber of franes in buffer}
dbFl ags: Longl nt ; {buffer status flags}
dbUser I nf o: ARRAY[0. . 1] OF Longl nt;

{for application's use}
dbSoundDat a: PACKED ARRAY[0..0] OF Byte;
{array of data}
END;

The bulffer status flags field for each of the two buffers might contain either of
these values:

Using the Sound Manager 2-69

Jabeuel\ punos n

CHAPTER 2

Sound Manager

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

All other bits in the dbFI ags field are reserved by Apple; your application should not
modify them.

The following two sections illustrate how to fill out these data structures, create your
two buffers, and define a doubleback procedure to refill the buffers when they
become empty.

Setting Up Double Buffers

Before you can call SndPl ayDoubl eBuf f er, you need to allocate two buffers (of type
SndDoubl eBuf f er), fill them both with data, set the flags for the two buffers to

dbBuf f er Ready, and then fill out a record of type SndDoubl eBuf f er Header with the
appropriate information. Listing 2-34 illustrates how you can accomplish these tasks.

Listing 2-34 Setting up double buffers

CONST
kDoubl eBuf fer Si ze = 4096; {size of each buffer (in bytes)}
TYPE
Local Vars = {vari abl es used by the doubl eback procedure}
RECORD
byt esTot al : Longl nt; {total nunber of sanpl es}
byt esCopi ed: Longl nt ; {nunber of sanples copied to buffers}
dat aPtr: Ptr; {pointer to sanple to copy}
END;

Local VarsPtr = ~Local Vars;

{This function uses SndPl ayDoubl eBuffer to play the sound specified.}
FUNCTI ON MyDBSndPl ay (chan: SndChannel Ptr; sndHeader: SoundHeaderPtr): OSErr;
VAR

nyvars: Local Vars;
my Dbl Header : SndDoubl eBuf f er Header ;
my Dbl Buf f er: SndDoubl eBuf ferPtr;
my St at us: SCSt at us;
myl ndex: I nt eger;
myErr: CSErr;
BEG N
{Set up nyVars with initial information.}
nyVars. bytesTotal := sndHeader”. | ength;
nyVars. byt esCopi ed : = 0; {no sanpl es copi ed yet}

myVars. dataPtr := Ptr(@ndHeader . sanpl eArea[0]);

2-70 Using the Sound Manager

CHAPTER 2

Sound Manager

{pointer to first sanpl e}
{Set up SndDoubl eBuf f er Header . }
W TH nyDbl Header DO

BEG N
dbhNunthannel s : = 1; {one channel}
dbhSanpl eSi ze : = 8§; {8-bit sanpl es}
dbhConpressionl D : = 0; {no conpression}
dbhPacket Si ze : = 0; {no conpression}

dbhSanpl eRat e : = sndHeader ”. sanpl eRat e;
dbhDoubl eBack : = @Doubl eBackPr oc;
END;

FOR nylndex := 0 TO 1 DO {initialize both buffers}
BEG N
{Get menory for double buffer.}
nmyDbl Buf fer : = SndDoubl eBuf f er Pt r (NewPt r (Si zeof (SndDoubl eBuffer) +
kDoubl eBuf fer Si ze)) ;

Jabeuel\ punos n

| F nmyDbl Buffer = NIL THEN
BEG N
MyDBSndPl ay : = MenError;
Exi t (MyDBSndPI ay) ;

END;
nyDbl Buf f er . dbNunfr ames : = 0; {no frames yet}
nmy Dbl Buf f er~. dbFl ags : = 0; {buffer is enpty}

myDbl Buf f er*. dbUser I nfo[0] := Longlnt(@ryVars);

{Fill buffer with sanples.}
MyDoubl eBackPr oc(sndChan, nyDbl Buffer);

{Store buffer pointer in header.}

myDbl Header . dbhBuf fer Pt r[myl ndex] := myDbl Buffer;
END;
{Start the sound playing.}
myErr : = SndPl ayDoubl eBuf f er (sndChan, @ryDbl Header) ;
I F nyErr <> noErr THEN
BEG N

MyDBSndPl ay : = nyErr;

Exi t (MyDBSndPI ay) ;
END;

{wait for the sound' s end by checking the channel status.}
REPEAT

Using the Sound Manager 2-71

CHAPTER 2

Sound Manager

nyErr := SndChannel Status(chan, sizeof(nyStatus), @tatus);
UNTI L NOT mySt at us. scChannel Busy;

{Di spose doubl e buffer nenory.}
FOR nylndex := 0 TO 1 DO
Di sposePtr (Ptr (nmyDbl Header. dbhBufferPtr[nyl ndex]));

MyDBSndPl ay : = noErr;
END;

The function \yDBSndPI ay takes two parameters, a pointer to a sound channel and a
pointer to a sound header. For information about obtaining a pointer to a sound header,
see “Obtaining a Pointer to a Sound Header” on page 2-57. The MyDBSndPI ay function
reads the sound header to determine the characteristics of the sound to be played (for
example, how many samples are to be sent into the sound channel). Then MyDBSndPI ay
fills in the fields of the double buffer header, creates two buffers, and starts the sound
playing. The doubleback procedure MyDoubl eBackPr oc is defined in the next section.

Writing a Doubleback Procedure

The dbhDoubl eBack field of a double buffer header specifies the address of a
doubleback procedure, an application-defined procedure that is called when the double
buffers are switched and the exhausted buffer needs to be refilled. The doubleback
procedure should have this format:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf f er: SndDoubl eBufferPtr);

The primary responsibility of the doubleback procedure is to refill an exhausted buffer
of samples and to mark the newly filled buffer as ready for processing. Listing 2-35
illustrates how to define a doubleback procedure. Note that the sound channel pointer
passed to the doubleback procedure is not used in this procedure.

This doubleback procedure extracts the address of its local variables from the

dbUser | nf o field of the double buffer record passed to it. These variables are used to
keep track of how many total bytes need to be copied and how many bytes have been
copied so far. Then the procedure copies at most a bufferfull of bytes into the empty
buffer and updates several fields in the double buffer record and in the structure
containing the local variables. Finally, if all the bytes to be copied have been copied,
the buffer is marked as the last buffer.

Note

Because the doubleback procedure is called at interrupt time, it cannot
make any calls that move memory either directly or indirectly. (Despite
its name, the Bl ockMove procedure does not cause blocks of memory to
move or be purged, so you can safely call it in your doubleback
procedure, as illustrated in Listing 2-35.) O

2-72 Using the Sound Manager

CHAPTER 2

Sound Manager

Listing 2-35 Defining a doubleback procedure

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
doubl eBuf fer: SndDoubl eBufferPtr);

VAR
myVar sPtr: Local VarsPtr;
nmyNunByt es: Longl nt;

BEG N

{Get pointer to ny local variables.}
nmyVarsPtr := Local VarsPtr (doubl eBuf fer”. dbUserInfo[O0]);

{Get nunber of bytes left to copy.}
nyNunBytes : = nyVarsPtr”. bytesTotal - nyVarsPtr”. byt esCopi ed;

Jabeuel\ punos n

{1f the armount left is greater than double buffer size, linmt the nunber }
{ of bytes to copy to the size of the buffer.}
| F nyNunByt es > kDoubl eBuf ferSi ze THEN

myNunmByt es : = kDoubl eBufferSi ze;

{Copy sanples to double buffer.}
Bl ockMove(myVarsPtr”. dataPtr, @loubl eBuffer”. dbSoundDat a[0], nyNunBytes);

{Store nunber of sanples in buffer and mark buffer as ready.}
doubl eBuf f er ». dbNuntr anes : = nyNunByt es;
doubl eBuf f er *. dbFl ags : = BOR(doubl eBuf f er*. dbFl ags, dbBuf f er Ready) ;

{Updat e data pointer and nunber of bytes copied.}
nyVarsPtr”~. dataPtr := Ptr(ORD4(nyVarsPtr”. dataPtr) + myNunBytes);
nmyVar sPtr”. byt esCopi ed : = nyVarsPtr”. byt esCopi ed + nmyNunByt es;

{1f all sanples have been copied, then this is the | ast buffer.}
| F nyVarsPtr”. byt esCopi ed = nyVarsPtr”. bytesTotal THEN
doubl eBuf f er*. dbFl ags : = BOR(doubl eBuf f er”. dbFl ags, dblLastBuffer);
END;

Sound Storage Formats

This section describes in detail the formats of sound resources and sound files, which are
the two principal storage formats for sound data on Macintosh computers. In general, an
application that uses the services provided by the Sound Manager and the Sound Input
Manager to play and record sounds does not need to know how the sound data is

Sound Storage Formats 2-73

CHAPTER 2

Sound Manager

organized in memory or on disk. For some special purposes, however, you might need
the information in this section.

Sound Resources

A sound resource is a resource of type' snd ' that contains sound commands and
possibly also sound data. Sound resources are widely used by Macintosh applications
that produce sounds. These resources provide a simple and portable way for you to
incorporate sounds into your application. For example, the sounds that a user can select
in the Sound control panel as the system alert sound are stored in the System file as

'snd ' resources.

There are two types of ' snd ' resources, known as format 1 and format 2. Figure 2-4

illustrates the structures of both kinds of ' snd ' resources.

Figure 2-4 The structure of ' snd ' resources
"snd ' format1
Format 2
Number of data formats 2
First data format ID 2 "snd ' format 2
These fields
may be Format 2
absent if Init option for channel 4
“Number of Reference count 2
data formats"
is 0 Number of sound commands 2 Number of sound commands 2
Z First sound command / 8 Z First sound command /8
Z Last sound command / 8 Z Last sound command /8
: Sampled-sound data : . :
Optional { or wave-table data { Variable { Sampled-sound data { Variable
IMPORTANT
The format2' snd ' resource is obsolete. Your application should
create only format 1' snd ' resources. The format2' snd ' resource
was designed for use by HyperCard and can be used with
sampled-sound data only. a
2-74 Sound Storage Formats

CHAPTER 2

Sound Manager

Resource IDs for ' snd ' resources in the range 0 to 8191 are reserved for use by
Apple Computer, Inc. The ' snd ' resources numbered 1 through 4 are defined to be
the standard system alert sounds, although more recent versions of system software
have included more standard system alert sounds.

When a sound command contained in an' snd ' resource has associated sound data,
the high bit of the command is set. This changes the meaning of the par an® field of the
command from a pointer to a location in RAM to an offset value that specifies the offset
in bytes from the resource’s beginning to the location of the associated sound data (such
as a sampled sound header). Figure 2-5 illustrates the location of this data offset bit.

Figure 2-5 The location of the data offset bit

~«— \Word —» -—\Word —» -«— Long word ———»

[

Data offset bit (used by ' snd ' resource only)

cnd par aml par an

The offset bit is used only by sound commands that are stored in sound resources of
type' snd ' and that have associated sound data (that is, sampled-sound or
wave-table data).

You can use a constant to access that flag.

CONST
dat a0 f set Fl ag = $8000; {sound conmand data offset bit}

If the dat aCf f set FI ag bit is not set, par an? is interpreted instead as a pointer to the
location in memory (outside the sound resource) where the data is located.

The first few bytes of the resource contain ' snd ' header information and are a
different size for each format. An audio data type specified in a format1' snd '
requires 6 bytes. The number of data types multiplied by 6 is added to this offset. The
number of commands multiplied by 8 bytes, the size of a sound command, is added to
the offset.

The Format 1 Sound Resource

Figure 2-4 shows the fields of a format1' snd ' resource. A format1' snd ' resource
header contains information about the format of the resource (namely, 1), the data type,
and the initialization options for that data type. A format1' snd ' resource contains
sound commands and might also contain the actual sound data for wave-table sounds or
sampled sounds. Note that if a sound resource includes sampled-sound data, then part
of the sound data section is devoted to a sound header that describes the sampled-sound
data in the remainder of the sound data section.

Sound Storage Formats 2-75

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Ifan' snd ' resource specifies a data type, it can supply an initialization option in the
field immediately following the type. You specify the number of commands in the
resource in the number of sound commands field. The sound commands follow, in the
order in which they should be sent to the sound channel.

The format1' snd ' resource might contain only a sequence of commands describing a
sound. In this case, the number of data types should be 0, and there should be no data
type specification or initialization option in the ' snd ' resource. This allows the

"snd ' resource to be used with any kind of sound data.

Listing 2-36 shows the output of the MPW tool DeRez when applied to the ' snd '
resource with resource ID 1 contained in the System file.

Listing 2-36 Aformat1l 'snd ' resource

data 'snd ' (1, "Sinple Beep", purgeable) {
/*the sound resource header*/

$"0001" [*format type*/
$"0001" /*nunmber of data types*/
$" 0001" / *squar e- wave dat a*/

$"00000000" /*initialization option*/
/*the sound commands*/

$"001B" / *nunber of sound commands (27)*/
$"002C" /*command 1--tinmbreCnrd 090 000*/
$" 005A00000000"

$" 002B" /*command 2--anmpCnd 224 000*/

$" 00E000000000"

$" 002A" /*conmmand 3--freqCnd 000 069*/
$"000000000045"

$" 000A" /*conmand 4--waitCrd 040 000*/

$" 002800000000"

$" 002B" /*command 5--anmpCnd 200 000*/

$"00C800000000"

/*commands 6 through 26 are onitted; they are */

/* alternating pairs of waitCnd and anpCnd conmands */
/* where the first paraneter of anmpCnd has the */

/* values 192, 184, 176, 168, 160, 144, 128, 96, */

/* 64, and 32*/

$"002B" /*comand 27--anmpCnd 000 000*/
$"000000000000"

}s

As you can see, the Simple Beep is actually a rather sophisticated sound, in which the
loudness (or amplitude) of the beep gradually decreases from an initial value of 224 to 0.

2-76 Sound Storage Formats

CHAPTER 2

Sound Manager

Notice that the sound shown in Listing 2-36 is defined using square-wave data and is
completely determined by a sequence of specific commands. (“Play an A at loudness
224, wait 20 milliseconds, play it at loudness 200....”) Often, an' snd ' resource consists
only of a single sound command (usually the buf f er Cnil command) together with data
that describes a sampled sound to be played. Listing 2-37 shows an example like this.

Listing 2-37 Aformatl 'snd ' resource containing sampled-sound data

data 'snd ' (19068, "hello daddy", purgeable) {
/*the sound resource header*/

$"0001" /*format type*/

$"0001" /*nunber of data types*/

$" 0005" / *sanpl ed- sound dat a*/

$"00000080" /*initialization option: initMno*/

/*the sound commands*/

$"0001" [*nunber of sound conmands that follow (1)*/
$"8051" /*command 1- - buf f er Crd*/

$"0000" /*paraml = 0%/

$"00000014" [*paran? = offset to sound header (20 bytes)*/
/*the sanpl ed sound header*/

$"00000000" /*pointer to data (it follows i mediately)*/
$"00000BB8" [*nunber of bytes in sanple (3000 bytes)*/
$" 56EE8BA3" /*sanmpling rate of this sound (22 kHz)*/

$" 000007D0" /*starting of the sanple's | oop point*/
$"00000898" /*ending of the sample's | oop point*/

$" 00" /*standard sanpl e encodi ng*/

$"3C' / *baseFrequency at which sanple was taken*/

/*t he sanpl ed- sound dat a*/
$"80 80 81 81 81 81 81 81 80 80 80 80 80 81 82 82"
$"82 83 82 82 81 80 80 7F 7F 7F 7E 7D 7D 7D 7C 7C'
$"7C 7C 7D 7D 7D 7D 7E 7F 80 80 81 81 82 82 83 83"
$"83 83 82 81 81 80 80 81 81 81 81 81 82 81 81 80"
$"80 80 81 81 81 83 83 83 82 81 81 80 7F 7E 7D 7D'
$"7F 7F 7F 7F 7TE 7F 7F 7F 7F 7F 7F 7F 7F 7F 7F 80"
/*rest of data onmitted in this exanple*/

b

This' snd ' resource indicates that the sound is defined using sampled-sound data. The
resource includes a call to a single sound command, the buf f er Cnd command. The
offset bit of the command number is set to indicate that the sound data is contained in
the resource itself. Following the command and its two parameters is the sampled sound
header, the first part of which contains important information about the sample. The
second parameter to the buf f er Cnmd command indicates the offset from the beginning
of the resource to the sampled sound header, in this case 20 bytes. After the sound

Sound Storage Formats 2-77

Jabeuel\ punos n

CHAPTER 2

Sound Manager

commands, this resource includes a sampled sound header, which includes the
sampled-sound data. The format of a sampled sound header is described in “Sound
Header Records” on page 2-104.

For compressed sound data, the sampled sound header is replaced by a compressed
sampled sound header. Listing 2-38 illustrates the structure of an' snd ' resource that
contains compressed sound data.

Listing 2-38 An 'snd ' resource containing compressed sound data

data 'snd ' (9004, "Raisa's Cry", purgeable) {
/*the sound resource header*/

$"0001" [*format type*/
$"0001" /*nunber of data types*/
$"0005" /*first data type*/

$"00000380" /*initialization option: initMACE3 + initMno*/
/*the sound command*/

$"0001" [*nunber of sound conmands that follow (1)*/
$"8051" /*cmd: buf f er Crd*/
$"0000" [*paraml: unused*/

$"00000014" /*paranmR: offset to sound header (20 bytes)*/
/*the conpressed sanpl ed sound header*/

$"00000000" /*pointer to data (it follows inmrediately)*/
$"00000001" /*nunber of channels in sanple*/

$"56EE8BA3" /*sanpling rate of this sound (22 kHz)*/
$"00000000" /*starting of the sanple's |oop point; not used*/
$"00000000" /*ending of the sanple's |oop point; not used*/
$" FE" /*conpressed sanpl e encodi ng*/

$" 00" / *baseFr equency; not used*/

$"00006590" /*nunber of franes in sanple (26,000)*/

$" 400DADDD1745D145826B"

/*Al FFSanpl eRate (22 kHz in extended type)*/
$"00000000" /*marker Chunk; NL for 'snd ' resource*/
$"4D414333" /*format; MACE 3: 1 conpressi on*/
$"00000000" /*futureUse2; NIL for 'snd ' resource*/
$"00000000" /*stateVars; NIL for 'snd ' resource*/
$"00000000" /*IeftOverBl ockPtr; not used here*/

$" FFFF" /*conpressionl D, -1 neans use format field*/
$"0010" [*packet Si ze, packetSize for 3:1 is 16 bits*/

$" 0000" [*snthIDis 0%/

$"0008" / *sanpl eSi ze, sound was 8-bit before processing*/
$"2F 85 81 32 64 87 33 86" /*the conpressed sound data*/

$"6F 48 6D 65 72 6B 82 88"
$"91 FE 8D 8E 86 4E 7C E9"

2-78 Sound Storage Formats

CHAPTER 2

Sound Manager

$"6F 6D 71 70 7E 79 4F 83"
$"59 8F 8F 65" /*rest of data omtted in this exanple*/

b

This resource has the same general structure as the ' snd ' resource illustrated in
Listing 2-36. The principal difference is that the standard sound header is replaced by
the compressed sound header. This example resource specifies a monophonic sound
compressed by using the 3:1 compression algorithm. A multichannel compressed
sound’s data would be interleaved on a packet basis. See “Compressed Sound Header
Records” beginning on page 2-108 for a complete explanation of the compressed sound
header.

As you've seen, it is not always necessary to specify ' snd ' resources by listing the raw
data stream contained in them; indeed, for certain types of format1' snd ' resources, it
can be easier to supply a resource specification like the one given in Listing 2-39.

Listing 2-39 A resource specification

resource 'snd ' (9000, "Nathan's Beep", purgeable) {

For mat One {
{ /[/*array of data types: 1 elenent*/
[*[1]*/
squar eWaveSynt h, 0
}
1
{ /*array SoundCmds: 3 el ements*/

/*[1]*/ noData, tinbreCnd {90},
/[*[2]*/ noData, freqDurationCnd {480, $00000045},
/*[3]*/ noData, quietCrd {},
b
{ /*array DataTables: 0 el ements*/
b
1

When you pass a handle to this resource to the SndPI ay function, three commands are
executed by the Sound Manager: at i nbr eCnd command, a f r eqDur at i onCnd
command, and a qui et Cnd command. The sound specified in Listing 2-39 is just like the
Simple Beep, except that there is no gradual reduction in the loudness. Listing 2-40
shows a resource specification for the Simple Beep.

Listing 2-40 A resource specification for the Simple Beep

resource 'snd ' (9001, "Copy of Sinple Beep", purgeable) {
For mat One {
{ [/*array of data types: 1 elenent*/

Sound Storage Formats 2-79

Jabeuel\ punos n

CHAPTER 2

Sound Manager

[*[1]*/
squar eWaveSynt h, 0

}

1

{ [/*array SoundCmds: 27 el enents*/
[*[1]*] nodata, tinbreCnmd {90},
[*[2]*/ nodata, ampCnd {224},
[*[3]*/ nodata, freqCnd {69},
[*[4] %/ nodata, waitCnd {40},
[*[5]*/ nodata, ampCnd {200},
[*[6]*/ nodata, waitCnd {40},
[*[7]/ nodata, ampCnd {192},
[*[8]*/ nodata, waitCnd {40},
[*[9]*/ nodata, anpCnd {184},
[*[10] */ nodat a, waitCnrd {40},
[*[11]*/ nodata, ampCnd {176},
[*[12] */ nodata, waitCnd {40},
[*[13]*/ nodata, ampCnd {168},
[*[14]*/ nodata, waitCnd {40},
[*[15] */ nodata, anpCnd {160},
[*[16] */ nodat a, waitCnd {40},
[*[17]*/ nodata, ampCnd {144},
[*[18] */ nodata, waitCnd {40},
[*[19]*/ nodata, ampCnd {128},
[*[20]*/ nodata, waitCnd {40},
[*[21] */ nodata, anpCrd {96},
[*[22] */ nodat a, waitCnd {40},
[*[23]*/ nodata, ampCnd {64},
[*[24] */ nodata, waitCnd {40},
[*[25]*/ nodata, ampCnd {32},
[*[26]*/ nodata, waitCnd {40},
[*[27] */ nodata, anpCrd {0},

},

{ [/*array DataTables: 0 el enents*/

}

The Format 2 Sound Resource

The SndPl ay function can also play format2' snd ' resources, which are designed

for use only with sampled sounds. The SndPl ay function supports this format by
automatically opening a sound channel and using the buf f er Cnd command to send the
data contained in the resource to the channel.

2-80 Sound Storage Formats

CHAPTER 2

Sound Manager

Figure 2-4 illustrates the fields of a format2' snd ' resource. The reference count field
is for your application’s use and is not used by the Sound Manager. The number of
sound commands field and the sound command fields are the same as described in a
format 1 resource. The last field of this resource contains the sampled sound. The first
command should be either a soundCnd command or buf f er Cnd command with the
data offset bit set in the command to specify the location of this sampled sound header.

Listing 2-41 shows a resource specification that illustrates the structure of a format 2

"snd ' resource.

Listing 2-41 Aformat2' snd ' resource

data 'snd ' (9003, "Pig Squeal", purgeable) {
/*the sound resource header*/

Jabeuel\ punos n

$"0002" /*format type*/

$" 0000" /*reference count for application's use*/
/*the sound conmmand*/

$"0001" / *nunber of sound commands that follow (1)*/
$"8051" /*command 1- - buf f er Cd*/

$" 0000" /*paranml = 0*/

$" 0000000E" /*param? = of fset to sound header (14 bytes)*/
/*the sanpl ed sound header*/

$"00000000" /*pointer to data (it follows imediately)*/
$"00000BB8" /*nunber of bytes in sanple (3000 bytes)*/
$" 56EE8BA3" /[*sanpling rate of this sound (22 kHz)*/
$"000007D0" /[*starting of the sanple's |oop point*/
$"00000898" /*endi ng of the sanple's |oop point*/

$" 00" /*standard sanpl e encodi ng*/

$"3C / *baseFrequency at which sanple was taken*/
$"80 80 81 82 84 87 93 84" / *t he sanpl ed- sound dat a*/

$"6F 68 6D 65 72 7B 82 88"
$"91 8E 8D 8F 86 7E 7C 79"
$"6F 6D 71 70 70 79 7F 81"
$"89 8F 8D 8B" /*rest of data omitted in this exanple*/

b

Note
Remember that format2' snd ' resources are obsolete. You should
create only format 1' snd ' resources. O

Sound Files

This section describes in detail the structure of AIFF and AIFF-C files. Both of these types
of sound files are collections of chunks that define characteristics of the sampled sound
or other relevant data about the sound.

Sound Storage Formats 2-81

2-82

CHAPTER 2

Sound Manager

Note

Most applications only need to read AIFF and AIFF-C files or to record
sampled-sound data directly to them. You can both play and record
AIFF and AIFF-C files without knowing the details of the AIFF and
AIFF-C file formats, as explained in the chapter “Introduction to Sound
on the Macintosh” in this book. Thus, the information in this section is
for advanced programmers only. O

Currently, the AIFF and AIFF-C specifications include the following chunk types.

Chunk type
Form Chunk

Format Version Chunk

Common Chunk
Sound Data Chunk

Marker Chunk
Comments Chunk
Sound Accelerator Chunk

Instrument Chunk

MIDI Data Chunk
Audio Recording Chunk

Application Specific
Chunk

Name Chunk
Author Chunk

Copyright Chunk
Annotation Chunk

Description

Contains information about the format of an AIFF or
AIFF-C file and contains all the other chunks of such a file.

Contains an indication of the version of the AIFF-C
specification according to which this file is structured
(AIFE-C only).

Contains information about the sampled sound such as
the sampling rate and sample size.

Contains the sample frames that comprise the
sampled sound.

Contains markers that point to positions in the sound data.
Contains comments about markers in the file.

Contains information intended to allow applications to
accelerate the decompression of compressed audio data.

Defines basic parameters that an instrument (such as a
sampling keyboard) can use to play back the sound data.

Contains MIDI data.

Contains information pertaining to audio recording
devices.

Contains application-specific information.

Contains the name of the sampled sound.

Contains one or more names of the authors (or creators) of
the sampled sound.

Contains a copyright notice for the sampled sound.

Contains a comment.

The following sections document the four principal kinds of chunks that can occur in

AIFF and AIFF-C files.

Chunk Organization and Data Types

An AIFF or AIFF-C file contains several different types of chunks. For example, there is a
Common Chunk that specifies important parameters of the sampled sound, such as its
size and sample rate. There is also a Sound Data Chunk that contains the actual audio
samples. A chunk consists of some header information followed by some data. The

Sound Storage Formats

CHAPTER 2

Sound Manager

header information consists of a chunk ID number and a number that indicates the size
of the chunk data. In general, therefore, a chunk has the structure shown in Figure 2-6.

Figure 2-6 The general structure of a chunk
B
ckl D)
— header info
ckSi ze
-/
B
data — data bytes
g

The header information of a chunk has this structure:

TYPE ChunkHeader =

RECORD

ckl D: | O {chunk type |D}

ckSi ze: Longlnt; {nunmber of bytes of data}
END;

The ckl Dfield specifies the chunk type. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII value $20) through

' ~' (ASCII value $7E). Spaces cannot precede printing characters, but trailing spaces are
allowed. Control characters are not allowed. You can specify values for the four types of
chunks described later by using these constants:

CONST
Form D = 'FORM ; {I1D for Form Chunk}
Format VersionlD = 'FVER ; {1D for Format Version Chunk}
Commonl D = ' COW ; {ID for Conmon Chunk}
SoundDat al D = ' SSND ; {I1D for Sound Data Chunk}

The ckSi ze field specifies the size of the data portion of a chunk and does not include
the length of the chunk header information.

The Form Chunk

The chunks that define the characteristics of a sampled sound and that contain the actual
sound data are grouped together into a container chunk, known as the Form Chunk. The
Form Chunk defines the type and size of the file and holds all remaining chunks in the
file. The chunk ID for this container chunk is' FORM .

Sound Storage Formats 2-83

Jabeuel\ punos n

2-84

CHAPTER 2

Sound Manager

A chunk of type' FORM has this structure:

TYPE Cont ai ner Chunk =

RECORD
ckl D I D {' FORM }
ckSi ze: Longl nt; {nunber of bytes of data}
f or nType: | D {type of file}

END;

For a Form Chunk, the ckSi ze field contains the size of the data portion of this chunk.
Note that the data portion of a Form Chunk is divided into two parts, f or niType and the
rest of the chunks of the file, which follow the f or nTy pe field. These chunks are called
local chunks because their chunk IDs are local to the Form Chunk.

The local chunks can occur in any order in a sound file. As a result, your application
should be designed to get a local chunk, identify it, and then process it without making
any assumptions about what kind of chunk it is based on its order in the Form Chunk.

The f or nType field of the Form Chunk specifies the format of the file. For AIFF files,

f ornifype is' Al FF' . For AIFF-C files, f or nType is' Al FC . Note that this type might
not be the same as the operating-system type with which the File Manager identifies the
file. In particular, a file of operating-system type ' Al FC might be formatted as an AIFF
file.

The Format Version Chunk

One difference between the AIFF and AIFF-C file formats is that files of type AIFF-C
contain a Format Version Chunk and files of type AIFF do not. The Format Version
Chunk contains at i nest anp field that indicates when the format version of this
ATFF-C file was defined. This in turn indicates what format rules this file conforms to
and allows you to ensure that your application can handle a particular AIFF-C file. Every
AIFF-C file must contain one and only one Format Version Chunk.

In AIFF-C files, a Format Version Chunk has this structure:

TYPE For mat Ver si onChunk =

RECORD

ckl D | O {' FVER }

ckSi ze: Longl nt ; {4}

ti mestanp: Longlnt; {date of format version}
END;
Note

In AIFF files, there is no Format Version Chunk. O

Thet i mest anp field indicates when the format version for this kind of file was created.
The value indicates the number of seconds since January 1, 1904, following the normal
time conventions used by the Macintosh Operating System. (See the chapter on date and

Sound Storage Formats

CHAPTER 2

Sound Manager

time utilities in Inside Macintosh: Operating System Ultilities for several routines that allow

you to manipulate time stamps.)

You should not confuse the format version time stamp with the creation date of the file.
The format version time stamp indicates the time of creation of the version of the format
according to which this file is structured. Because Apple defines the formats of AIFF-C

files, only Apple can change this value. The current version is defined by a constant:

CONST
Al FCVer si onl = $A2805140; {May 23, 1990, 2:40 p.m}

The Common Chunk

Every AIFF and AIFF-C file must contain a Common Chunk that defines some
fundamental characteristics of the sampled sound contained in the file. Note that the
format of the Common Chunk is different for AIFF and AIFF-C files. As a result, you
need to determine the type of file format (by inspecting the f or niType field of the
Form Chunk) before reading the Common Chunk.

For AIFF files, the Common Chunk has this structure:

TYPE ComonChunk =

RECORD
ckl D | O {' cOW }
ckSi ze: Longl nt; {size of chunk dat a}
nunthannel s: I nt eger; {nunber of channel s}
nunBanpl eFrames: Longl nt; {nunmber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended,; {nunber of franes per second}
END;

For AIFF-C files, the Common Chunk has this structure:

TYPE Ext CommpbnChunk =

RECORD
ckl D | O {' cOW }
ckSi ze: Longl nt; {size of chunk data}
nunthannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended,; {nunber of franes per second}
conpressi onType: 1D {conmpression type |D}

conpressi onNane: PACKED ARRAY[0..0] OF Byte
{conpression type nane}
END;

The fields that exist in both types of Common Chunk have the following meanings:

Sound Storage Formats

2-85

Jabeuel\ punos n

2-86

CHAPTER 2

Sound Manager

The nunChannel s field of both types of Common Chunk indicate the number of audio
channels contained in the sampled sound. A value of 1 indicates monophonic sound, a
value of 2 indicates stereo sound, a value of 4 indicates four-channel sound, and so forth.
Any number of audio channels may be specified. The actual sound data is stored
elsewhere, in the Sound Data Chunk.

The nunSanpl eFr anes field indicates the number of sample frames in the Sound Data
Chunk. Note that this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For noncompressed sound data, the
total number of sample points in the file is nunChannel s * nunSanpl eFr anmes. (For
more information on sample points, see “Sampled-Sound Data” on page 2-9.)

The sanpl eSi ze field indicates the number of bits in each sample point of
noncompressed sound. Although the field can contain any integer from 1 to 32, the
Sound Manager currently supports only 8- and 16-bit sound. For compressed sound
data, this field indicates the number of bits per sample in the original sound data, before
compression.

The sanpl eRat e field contains the sample rate at which the sound is to be played back,
in sample frames per second. For a list of common sample rates, see Table 2-1 on
page 2-16.

An ATFF-C Common Chunk includes two fields that describe the type of compression
(if any) used on the audio data. The conpr essi onType field contains the type of the
compression algorithm, if any, used on the sound data. Here are the currently available
compression types and their associated compression names:

CONST
{conpression types}
NoneType = ' NONE' ;
ACE2Type = "ACE2',
ACE8Type = ' ACES';
MACE3Type = ' MAC3';
MACEG Ty pe = ' MACG' ;

You can define your own compression types, but you should register them with Apple.

Finally, the conpr essi onNane field contains a human-readable name for the
compression algorithm ID specified in the conpr essi onType field. Compression
names for Apple-supplied codecs are defined by constants:

CONST
{conpressi on nanes}
NoneNare = 'not conpressed’;
ACE2t o1Name = "ACE 2-to-1';
ACES8t o3Nane = "ACE 8-to-3';
MACES3t o1Nare = 'MACE 3-to-1';
MACE6t o1Narme = "MACE 6-to-1'";

Sound Storage Formats

CHAPTER 2

Sound Manager

This string is useful when putting up alert boxes (perhaps because a necessary
decompression routine is missing). Pad the end of this array with a byte having the value
0 if the length of this array is not an even number (but do not include the pad byte in the
count).

The Sound Data Chunk

The Sound Data Chunk contains the actual sample frames that make up the sampled
sound. The Sound Data Chunk has this structure:

TYPE SoundDat aChunk =

RECORD

ckl D | O {' SSND }

ckSi ze: Longl nt; {size of chunk data}

of fset: Longl nt; {offset to sound data}

bl ockSi ze: Longlnt; {size of alignnent bl ocks}
END;

The of f set field indicates an offset (in bytes) to the beginning of the first sample frame
in the chunk data. Most applications do not need to use the of f set field and should set
itto 0.

The bl ockSi ze field contains the size (in bytes) of the blocks to which the sound data
is aligned. This field is used in conjunction with the of f set field for aligning sound
data to blocks. As with the of f set field, most applications do not need to use the

bl ockSi ze field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. For information on the format of
sampled-sound data, see “Sampled-Sound Data” on page 2-9.

Note

The Sound Data Chunk is required unless the nunSanpl eFr anes field
in the Common Chunk is 0. A maximum of one Sound Data Chunk can
appear in an AIFF or AIFF-C file. O

Format of Entire Sound Files

Figure 2-7 illustrates an AIFF-C file that contains approximately 4.476 seconds of 8-bit
monophonic sound data sampled at 22 kHz. The sound data is not compressed. Note
that the number of sample frames in this example is odd, forcing a pad byte to be
inserted after the sound data. This pad byte is not reflected in the ckSi ze field of the
Sound Data Chunk, which means that special processing is required to correctly
determine the actual chunk size.

On a Macintosh computer, the Form Chunk (and hence all the other chunks in an AIFF
or AIFF-C file) is stored in the data fork of the file. The file type of an AIFF format file is
" Al FF', and the file type of an AIFF-C format file is ' Al FC . Macintosh applications
should not store any information in the resource fork of an AIFF or AIFF-C file because
that information might not be preserved by other applications that edit sound files.

Sound Storage Formats 2-87

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Figure 2-7 A sample AIFF-C file

Bytes Example
8 (cki D 4 FORM
Form :
Chunk ckSi ze 4 99690
L f or nType 4 AIFF-C
—
Format ckl D 4 FVER
Version — ckSi ze 4 4
Chunk :
L tinmestanp 4 27263184
6 ckiD 4 COMM
ckSi ze 4 38
AIFF-C__| nuntChannel s 2 1
file Common nunSanpl eFr anes | 4 99611
Chunk sanpl eSi ze 2 8
sanpl eRat e 8 22254.54
conpr essi onType | 4 NONE
__| conpressi onName | 16 “not compressed”
(cki D 4 SSND
sound ckSi ze 4 99619
Data
Chunk of f set 4 0
bl ockSi ze 4 0
— —
Sound (sound data Variable Frame 1 to frame n (to 99,611)
data L pad byte 1 0

Every Form Chunk must contain a Common Chunk, and every AIFF-C file must contain

a Format Version Chunk. In addition, if the sampled sound has a length greater than 0,

there must be a Sound Data Chunk in the Form Chunk. All other chunk types are

optional. Your application should be able to read all the required chunks if it uses AIFF
or AIFF-C files, but it can choose to ignore any of the optional chunks.

When reading AIFF or AIFF-C files, you should keep the following points in mind:

» Remember that the local chunks in an AIFF or AIFF-C file can occur in any order. An
application that reads these types of files should be designed to get a chunk, identify
it, and then process it without making any assumptions about what kind of chunk it is
based on its order.

= If your application allows modification of a chunk, then it must also update other
chunks that might be based on the modified chunk. However, if there are chunks
in the file that your application does not recognize, you must discard those
unrecognized chunks. Of course, if your application is simply copying the AIFF or
ATFF-C file without any modification, you should copy the unrecognized chunks, too.

2-88 Sound Storage Formats

CHAPTER 2

Sound Manager

= You can get the clearest indication of the number of sample frames contained in an
AIFF or AIFF-C file from the nunSanpl eFr ames parameter in the Common Chunk,
not from the ckSi ze parameter in the Sound Data Chunk. The ckSi ze parameter is
padded to include the fields that follow it, but it does not include the byte with a
value of 0 at the end if the total number of sound data bytes is odd.

= Remember that each chunk must contain an even number of bytes. Chunks whose
total contents would yield an odd number of bytes must have a pad byte with a value
of 0 added at the end of the chunk. This pad byte is not included in the ckSi ze field.

= Remember that the ckSi ze field of any chunk does not include the first 8 bytes of the
chunk (which specify the chunk type).

Sound Manager Reference

Constants

This section describes the constants, data structures, and routines provided by the Sound
Manager. It also describes the format of data stored in sound resources and files that the
Sound Manager can play.

The section “Constants” describes the constants defined by the Sound Manager that you
can use to specify channel initialization parameters and sound commands. It also lists
the sound attributes selector for the Gest al t function and the returned bit numbers. See
the section “Summary of the Sound Manager” on page 2-157 for a list of all the constants
defined by the Sound Manager.

The section “Data Structures” beginning on page 2-99 describes the Pascal data
structures for all of the Sound Manager records that applications can use, including
sound commands, sound channels, and sound headers.

The section “Sound Manager Routines” beginning on page 2-119 describes the routines
that allow you to play sounds, manage sound channels, and obtain sound-related
information. That section also includes information on routines that give you low-level
control over sound output.

The section “Application-Defined Routines” beginning on page 2-151 describes callback
procedures and completion routines that your application might need to define.

The section “Resources” beginning on page 2-154 describes the organization of format 1

and format2' snd ' resources.

This section describes the constants that you can use to specify channel initialization
parameters, sound commands, and chunk IDs. It also lists the Gest al t function sound
attributes selector and the returned bit numbers. All other constants defined by the
Sound Manager are described at the appropriate location in this chapter. (For example,
the constants that you can use to specify sound data types are described in connection
with the SndNewChannel function beginning on page 2-127.)

Sound Manager Reference 2-89

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Gestalt Selector and Response Bits

You can pass the gest al t SoundAt t r selector to the Gest al t function to determine
information about the sound capabilities of a Macintosh computer.

CONST
gestal t SoundAt tr = 'snd '; {sound attributes sel ector}
The Gest al t function returns information by setting or clearing bits in the r esponse
parameter. The bits currently used are defined by constants. Note that most of these bits
provide information about the built-in hardware only.
IMPORTANT
Bits 7 through 12 are not defined for versions of the Sound Manager
prior to version 3.0. a
CONST
gestal t StereoCapability = 0; {built-in hw can play stereo sounds}
gestal t St er eoM xi ng = 1; {built-in hw m xes stereo to nono}
gest al t Soundl OMgr Pr esent = 3; {sound i nput routines avail abl e}
gestal t Bui | t I nSoundl nput = 4; {built-in input hw avail abl e}
gest al t HasSoundl nput Devi ce = 5; {sound i nput device avail abl e}
gest al t Pl ayAndRecor d = 6; {built-in hw can play while recordi ng}
gestal t 16Bi t Soundl O 7; {built-in hw can handl e 16-bit data}
gest al t St er eol nput = 8; {built-in hw can record stereo sounds}
gestal tLi neLevel | nput = 9; {built-in input hw needs line |evel}
gest al t SndPl ayDoubl eBuf fer = 10; {play fromdisk routines avail abl e}
gestal t Mul ti Channel s = 11; {mul tiple channel s of sound supported}
gestal t 16Bi t Audi oSupport = 12; {16-bit audi o data support ed}

2-90

Constant descriptions
gestal t StereoCapability
Set if the built-in sound hardware is able to produce stereo sounds.
gestal t St er eoM xi ng
Set if the built-in sound hardware mixes both left and right channels
of stereo sound into a single audio signal for the internal speaker.
gest al t Soundl Ovgr Pr esent
Set if the Sound Input Manager is available.
gestal t Bui | t | nSoundl nput
Set if a built-in sound input device is available.
gest al t HasSoundl nput Devi ce
Set if a sound input device is available. This device can be either
built-in or external.
gest al t Pl ayAndRecor d
Set if the built-in sound hardware is able to play and record sounds
simultaneously. If this bit is clear, the built-in sound hardware can
either play or record, but not do both at once. This bit is valid only if

Sound Manager Reference

CHAPTER 2

Sound Manager

the gest al t Bui | t | nSoundl nput bit is set, and it applies only to
any built-in sound input and output hardware.
gestal t 16Bi t Soundl O
Set if the built-in sound hardware is able to play and record 16-bit
samples. This indicates that built-in hardware necessary to handle
16-bit data is available.
gest al t St er eol nput
Set if the built-in sound hardware can record stereo sounds.
gest al t Li neLevel | nput
Set if the built-in sound input port requires line level input.
gest al t SndPl ayDoubl eBuf f er
Set if the Sound Manager supports the play-from-disk routines.
gestal t Mul ti Channel s
Set if the Sound Manager supports multiple channels of sound.
gestal t 16Bi t Audi oSupport
Set if the Sound Manager can handle 16-bit audio data. This
indicates that software necessary to handle 16-bit data is available.

Jabeuel\ punos n

Note
For complete information about the Gest al t function, see the chapter
“Gestalt Manager” in Inside Macintosh: Operating System Ultilities. O

Channel Initialization Parameters

You can use the following constants to specify initialization parameters for a sound
channel. You need to specify initialization parameters when you call SndNewChannel .

CONST
i ni t ChanLeft = $0002; {left stereo channel}
i ni t ChanRi ght = $0003; {right stereo channel}
wavel ni t Channel 0 = $0004; {wave-tabl e channel 0}
wavel ni t Channel 1 = $0005; {wave-tabl e channel 1}
wavel ni t Channel?2 = $0006; {wave-tabl e channel 2}
wavel ni t Channel 3 = $0007; {wave-tabl e channel 3}
i ni t Mono = $0080; {monophoni ¢ channel }
initStereo = $00C0; {stereo channel}
i ni t MACES = $0300; {3:1 conpression}
i ni t MACEG = $0400; {6:1 conpression}
i nitNolnterp = $0004; {no linear interpolation}
i ni t NoDrop = $0008; {no drop-sanpl e conversion}

Constant descriptions
i ni t ChanLeft Play sounds through the left channel of the Macintosh audio jack.
i ni t ChanRi ght Play sounds through the right channel of the Macintosh audio jack.

Sound Manager Reference 2-91

CHAPTER 2

Sound Manager

wavel ni t Channel 0

Play sounds through the first wave-table channel.

wavel ni t Channel 1

Play sounds through the second wave-table channel.

wavel ni t Channel 2

Play sounds through the third wave-table channel.

wavel ni t Channel 3

i ni t Mono

initStereo

i ni t MACE3

i ni t MACEG

i nitNolnterp

i ni t NoDrop

Play sounds through the fourth wave-table channel.

Play the same sound through both channels of the Macintosh audio
jack and the internal speaker. This is the default channel mode.

Play stereo sounds through both channels of the Macintosh audio
jack and the internal speaker. Note that some machines cannot play
stereo sounds.

Assume that the sounds to be played through the channel are
MACE 3:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Assume that the sounds to be played through the channel are
MACE 6:1 compressed. The SndNewChannel function uses this
information to help determine whether it can allocate a new sound
channel. A noncompressed sound plays normally, even through a
channel that has been initialized for MACE.

Do not use linear interpolation to smooth a sound played back at a
different sample rate from the sound’s recorded sample rate. Using
the i ni t Nol nt er p initialization parameter decreases the CPU load
for this channel. Sounds most affected by the absence of linear
interpolation are sinusoidal sounds. Sounds least affected are noisy
sound effects like explosions and screams.

Do not use drop-sample conversion to fake sample rate conversion.

Using the i ni t NoDr op initialization parameter increases the CPU
load for the channel but results in a smoother sound.

The Sound Manager also recognizes the following masks, which you can use to select
various channel attributes:

CONST
i ni t PanMask

i ni t SRat eMask
i ni t St ereoMask

i ni t CompMask

Sound Command Numbers

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sanple rate val ues}

= $00C0; {mask for nono/stereo val ues}

= $FFOO0; {mask for conpression |Ds}

2-92

You can perform many sound-related operations by sending sound commands to a
sound channel. For example, to change the volume of a sound that is currently playing,
you can send the anpCnd sound command to the channel using the SndDol mredi at e

Sound Manager Reference

CHAPTER 2

Sound Manager

routine. Similarly, to change the volume of all sounds subsequently to be played in a
sound channel, you can send the vol umeCnd sound command to that channel using the
SndDoCommand routine.

The cnd field of the SndCommand data structure (described on page 2-99) specifies the
sound command you want to execute. The par anil and par an® fields of that structure
contain any additional information that might be needed to complete the command. One
or both of these parameter fields might be ignored by a particular sound command. In
some cases, the Sound Manager returns information to your application in one of the
parameter fields.

IMPORTANT

In general, you'll use either SndDoCommand or SndDol nmredi at e to
send sound commands to a sound channel. With several commands,
however, you must use the SndCont r ol function to issue the sound
command. In Sound Manager version 3.0 and later, however, you
virtually never need to use SndCont r ol because the commands that
require it are either no longer supported (for example, avai | abl eCrd,
t ot al LoadCnd, and | oadCnd) or are obsolete (for example,

ver si onCrd). The sound commands specific to the SndCont r ol
function are documented here for completeness only. a

The sound commands available to your application are defined by constants.

CONST

nul | Cnd = 0; {do not hi ng}

qui et Cd = 3; {stop a sound that is playing}

fl ushCnd = 4; {flush a sound channel }

relnitCmd = b; {reinitialize a sound channel}

wai t Cd = 10; {suspend processing in a channel}

pauseCnd = 11; {pause processing in a channel}

resumeCmd = 12; {resume processing in a channel}

cal | BackCnmd = 13; {execute a cal |l back procedure}

syncCmd = 14; {synchroni ze channel s}

avai | abl eCnd = 24; {see if initialization options are }
{ supported}

ver si onCnd = 25; {determ ne version}

t ot al LoadCnd = 26; {report total CPU | oad}

| oadCnd = 27; {report CPU | oad for a new channel}

freqDurati onCrd = 40; {play a note for a duration}

rest Cnd = 41; {rest a channel for a duration}

freqCmd = 42; {change the pitch of a sound

anpCnd = 43; {change the anplitude of a sound}

ti mbr eCnd = 44; {change the tinbre of a sound}

get AnpCnd = 45; {get the anplitude of a sound}

vol uneCmd = 46; {set vol une}

get Vol uneCnd = 47; {get vol une}

Sound Manager Reference 2-93

Jabeuel\ punos n

CHAPTER 2

Sound Manager

waveTabl eCmd =

soundCnd

2-94

buf f er Cnd =

rat eCmd

get Rat eCd =

60;
80;
81;
82;
85;

{install a wave table as a voice}
{install a sanpled sound as a voi ce}
{play a sanpl ed sound}

{set the pitch of a sanpl ed sound}
{get the pitch of a sanpled sound}

Constant descriptions

nul | Cnd

qui et Cd

flushCmd

relnitCnd

wai t Cnd

pauseCnd

r esuneCnd

cal | BackCnd

syncCmd

Do nothing.
par ant: 0 (ignored on input and output)
par an?: 0 (ignored on input and output)

Stop the sound that is currently playing. You should send
qui et Cmd by using SndDol nmredi at e.

par an: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Remove all commands currently queued in the specified sound
channel. Af | ushCmd command does not affect any sound that is
currently in progress. You should send f | ushCnd by using
SndDol nmedi at e.

par ant: 0 (ignored on input and output)

par an?: 0 (ignored on input and output)

Reset the initialization parameters specified in par an® for the
specified channel.

par ani: 0 (ignored on input and output)

par an®: initialization parameters

Suspend further command processing in a channel until the
specified duration has elapsed. To achieve sounds longer than
32,767 half-milliseconds, Pascal programmers can pass a negative
number in par aml, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par ani.

par amil: duration in half-milliseconds (0 to 65,565)

par an?: 0 (ignored on input and output)

Pause any further command processing in a channel until
resumeCnd is received.

par an: 0 (ignored on input and output)

par an®: 0 (ignored on input and output)

Resume command processing in a channel that was previously
paused by pauseCnd.

par ant: 0 (ignored on input and output)

par an?: 0 (ignored on input and output)

Execute the callback procedure specified as a parameter to the
SndNewChannel function. Both par anl and par an? are
application-specific; you can use these two parameters to send data
to your callback routine.

par aml: application-defined

par an®: application-defined

Synchronize multiple channels of sound. A syncCnd command is
held in the specified channel, suspending all further command

Sound Manager Reference

CHAPTER 2

Sound Manager

avai | abl eCnd

ver si onCnd

t ot al LoadCnd

| oadCmrd

freqDurati onCnd

processing. The par an® parameter contains an identifier that is
arbitrary. Each time the Sound Manager receives syncCnd, it
decrements the count parameter for each channel having that
identifier. When the count for a specific channel reaches 0,
command processing in that channel resumes.

par aml: count

par an®: identifier

Return 1 in par ant if the Sound Manager supports the
initialization options specified in par an®? and 0 otherwise.
However, the Sound Manager might support certain initialization
parameters in general but not on a specific machine. You should
send avai | abl eCnd using the SndCont r ol function.

par ami: 0 on input; result of command on output

par an®: initialization parameters

Previously, this command determined which version of a sound
data format is available. The result is returned in par an®. The high
word of the result indicates the major revision number, and the low
word indicates the minor revision number. For example, version 2.0
of a data format would be returned as $00020000. However, this
command is obsolete, and your application should not rely on it.
You send ver si onCnd by using the SndCont r ol function.

par an: 0 (ignored on input and output)

par an®: 0 on input; version on output

Previously, this command determined the total CPU load factor for
all existing sound activity and for a new sound channel having the
initialization parameters specified in par an2. However, this
command is obsolete, and your application should not rely on it.
You send t ot al LoadCrd by using the SndCont r ol function.

par ami: 0 on input, load factor on output

par an®: initialization parameters

Previously, this command determined the CPU load factor that
would be incurred by a new channel of sound having the
initialization parameters specified in par an2. The load factor
returned in par ant is the percentage of CPU processing power that
the specified sound channel would require. However, this
command is obsolete, and your application should not rely on it.
You send | oadCnd by using the SndCont r ol function.

par ami: 0 on input, load factor on output

par an: initialization parameters

Play the note specified in par an® for the duration specified in
par anil. To achieve sounds longer than 32,767 half-milliseconds,
Pascal programmers can pass a negative number in par ami, in
which case the sound plays for 32,767 half-milliseconds plus the
absolute value of par aniL. The par an® parameter must contain a
value in the range 0 to 127. If you want the note to stop playing
after the duration specified in par ani, you must send qui et Cnd
after f r eqDur at i onCnd.

Sound Manager Reference 2-95

Jabeuel\ punos n

2-96

CHAPTER 2

Sound Manager

rest Crd

freqCmd

anmpCnd

ti nbreCmd

get AnpCnd

vol umeCmd

get Vol uneCnd

par anil: duration in half-milliseconds (0 to 65,565)
par an: desired frequency

Rest a channel for a specified duration. The duration is specified in
half-milliseconds in par amil. To achieve sounds longer than 32,767
half-milliseconds, Pascal programmers can pass a negative number
in par ant, in which case the sound plays for 32,767
half-milliseconds plus the absolute value of par ant.

par anmil: duration in half-milliseconds (0 to 65,565)

par an®: 0 (ignored on input and output)

Change the frequency (or pitch) of a sound. If no sound is currently
playing, then f r eqCnd causes the Sound Manager to begin playing
indefinitely at the frequency specified in par an?. If, however, no
instrument is installed in the channel and you attempt to play either
wave-table or sampled-sound data, no sound is produced. The

par an® parameter must contain a value in the range 0 to 127. The

f r eqCnd command is identical to the f r eqDur at i onCnd
command, except that no duration is specified to a f r eqCnd
command.

par ant: 0 (ignored on input and output)

par an: desired frequency

Change the amplitude (or loudness) of a sound. If no sound is
currently playing, then anpCnd sets the amplitude of the next
sound to be played. You specify the amplitude in par am; the
amplitude should be an integer in the range 0 to 255.

par amil: desired amplitude

par an®: 0 (ignored on input and output)

Change the timbre (or tone) of a sound currently being defined
using square-wave data. A timbre value of 0 produces a clear tone; a
timbre value of 254 produces a buzzing tone. You can use

ti mbr eCnd only for sounds defined using square-wave data.

par anil: desired timbre (0 to 254)

par an?: 0 (ignored on input and output)

Determine the current amplitude (or loudness) of a sound. The
amplitude is returned in an integer variable whose address you
pass in par an® and is in the range 0 to 255.

par aml: 0 (ignored on input and output)

par an: pointer to amplitude variable

Set the right and left volumes of the specified sound channel to the
volumes specified in the high and low words of par an®. The value
$0100 represents full volume, and $0080 represents half volume.
You can specify values larger than $0100 to overdrive the volume.
For example, setting par an? to $02000200 sets the volume on both
left and right speakers to twice full volume. Note, however, that
vol uneCnd is available only in Sound Manager versions 3.0 and
later.

par ant: 0 (ignored on input and output)

par an?: high word is right volume, low word is left volume

Get the current right and left volumes of the specified sound
channel. The volumes are returned in the high and low words of the

Sound Manager Reference

CHAPTER 2

Sound Manager

waveTabl eCrd

soundCnd

buf f er Cnd

rat eCmd

get Rat eCd

long integer pointed to by par an®. The value $0100 represents full
volume, and $0080 represents half volume. Note, however, that
get Vol umeCmd is available only in Sound Manager versions 3.0
and later.

par ant: 0 (ignored on input and output)

par an: pointer to volume data

Install a wave table as a voice in the specified channel. The par anil
parameter specifies the length of the wave table, and the par an?
parameter is a pointer to the wave-table data itself. You can use
waveTabl eCrd only for sounds defined using wave-table data.
par aml: length of wave table

par an: pointer to wave-table data

Install a sampled sound as a voice in a channel. If the high bit of the
command is set, par an® is interpreted as an offset from the
beginning of the ' snd ' resource containing the command to the
sound header. If the high bit is not set, par an® is interpreted as a
pointer to the sound header. You can use the soundCnd command
only with noncompressed sampled-sound data. You can also use
soundCmd to preconfigure a sound channel, so that you can later
send sound commands to it at interrupt time.

par ant: 0 (ignored on input and output)

par an: offset or pointer to sound header

Play a buffer of sampled-sound data. If the high bit of the command
is set, par an® is interpreted as an offset from the beginning of the
"snd ' resource containing the command to the sound header. If
the high bit is not set, par an®? is interpreted as a pointer to the
sound header. You can use buf f er Crd only with sampled-sound
data. Note that sending a buf f er Ond resets the rate of the channel
to 1.0.

par aml: 0 (ignored on input and output)

par an®: offset or pointer to sound header

Set the rate of a sampled sound that is currently playing, thus
effectively altering its pitch and duration. Your application can set a
rate of 0 to pause a sampled sound that is playing. The new rate is
set to the value specified in par an®, which is interpreted relative to
22 kHz. (For example, to set the rate to 44 kHz, pass $00020000 in
par an?; see Listing 2-4 on page 2-26 for sample code that uses

r at eCnd.) You can use r at eCnmd only with sampled-sound data.
par ant: 0 (ignored on input and output)

par an: desired rate of sound

Determine the sample rate of the sampled sound currently playing.
The current rate of the channel is returned in a Fi xed variable
whose address you pass in par an? of the sound command. The
values returned are always relative to the 22 kHz sampling rate, as
with the r at eCmd sound command. You can use get Rat eCnd only
with sampled-sound data, and you should send it by using

SndDol nmedi at e.

par aml: 0 (ignored on input and output)

par an®: pointer to rate variable

Sound Manager Reference 2-97

Jabeuel\ punos n

Chunk IDs

CHAPTER 2

Sound Manager

CONST

You can use the following constants to specify a chunk ID, a 4-byte value that identifies
the type of a chunk in an AIFF or AIFF-C file.

{IDs for AIFF and AIFF-C fil e chunks}

Form D

= 'FORM ; {1D for Form Chunk}

For mat Ver si onl D = 'FVER ; {1D for Format Version Chunk}
Commonl D = ' COW ; {ID for Conmon Chunk}
SoundDat al D = ' SSND ; {1D for Sound Data Chunk}
Mar ker | D = ' MARK' ; {1D for Marker Chunk}
Instrument| D = "I NST"; {ID for Instrunent Chunk}
M DI Dat al D ='MD"; {ID for MDI Data Chunk}
Audi oRecor di ngl D = ' AESD ; {1D for Recording Chunk}
ApplicationSpecificlD = "'APPL"; {ID for Application Chunk}
Comment | D = ' COMI" ; {1D for Comment Chunk}
Nanel D = " NAME' ; {1D for Name Chunk}

Aut hor I D = "AUTH ; {ID for Author Chunk}
CopyrightI D ='(c) '; {1D for Copyright Chunk}
Annot ati onl D = " ANNO ; {1D for Annotation Chunk}

Constant descriptions

Form D The Form Chunk. A Form Chunk contains information about the
format of the file, and contains all the other chunks of the file.

For mat Ver si onl D
The Format Version Chunk. A Format Version Chunk contains an
indication of the version of the AIFF-C specification according to
which this file is structured (AIFF-C only).

Comonl D The Common Chunk. A Common Chunk contains information
about the sampled sound, such as the sampling rate and
sample size.

SoundDat al D The Sound Data Chunk. A Sound Data Chunk contains the sample
frames that comprise the sampled sound.

Mar ker | D The Marker Chunk. A Marker Chunk contains markers that point to
positions in the sound data.

I nstrunent| D The Instrument Chunk. An Instrument Chunk defines basic
parameters that an instrument (such as a sampling keyboard) can
use to play back the sound data.

M DI Dat al D The MIDI Data Chunk. A MIDI Chunk contains MIDI data.

Audi oRecor di ngl D
The Audio Recording Chunk. An Audio Recording Chunk contains
information pertaining to audio recording devices.

Appl i cationSpecificlD
The Application Chunk. An Application Chunk contains
application-specific information.

2-98 Sound Manager Reference

CHAPTER 2

Sound Manager

Commrent | D The Comment Chunk. A Comment Chunk contains a comment.

Namel D The Name Chunk. A Name Chunk contains the name of the
sampled sound.

Aut hor I D The Author Chunk. An Author Chunk contains one or more names
of the authors (or creators) of the sampled sound.

CopyrightID The Copyright Chunk. A Copyright Chunk contains a copyright
notice for the sampled sound.

Annot at i onl D The Annotation Chunk. An Annotation Chunk contains a comment.

Data Structures

This section describes the data structures that the Sound Manager defines. The Sound
Manager uses many of these data structures (such as sound headers) to store information
about sounds or sound channels. You should use these data structures only if you need
to access this information or to customize sound play. The Sound Manager also defines
several data structures that allow you to control sound output or to receive information
about its status.

Jabeuel\ punos n

You use the sound command record to define a sound command that you send to the
Sound Manager using either the SndDoCommand or SndDol mredi at e functions.

If you want to play only a portion of a sound, you can use an audio selection record in
conjunction with the SndSt ar t Fi | ePl ay function.

You use the sound channel status record to obtain information from the Sound Manager
about a specific sound channel, and you use the Sound Manager status record to obtain
information about all sound channels.

The sound channel record stores information about a sound channel. Many of the fields
of this record are for internal Sound Manager use only, but there are a few that you can
access directly.

The sound header record stores information about sampled-sound data. You can use a
sound header record to obtain information on a sound or to change a sound’s loop
points. The extended sound header record and the compressed sound header record add
several fields to the sound header record that provide more information about a sound.

If your application uses the SndPl ayDoubl eBuf f er function to customize the double
buffering of sound data, you need to set up a sound double buffer header record, which
must include pointers to two sound double buffer records.

Sound Command Records

A sound command record describes a sound command that you send to a sound
channel using the SndDoCommand or SndDol medi at e function. The SndCommand
data type defines a sound command record.

Sound Manager Reference 2-99

CHAPTER 2

Sound Manager

TYPE SndCommand =
PACKED RECORD

cnd: I nt eger; {command nunber}

par aml: I nt eger; {first paraneter}

par ang: Longl nt ; {second paraneter}
END;

Field descriptions

cnd The number of the sound command you wish to execute.
par amnid The first parameter of the sound command.
par ang The second parameter of the sound command.

The meaning of the par aml and par an® fields depends on the particular sound
command being issued. See “Sound Command Numbers” beginning on page 2-92 for
a description of the sound commands your application can use.

Audio Selection Records

2-100

You can pass a pointer to an audio selection record to the SndSt art Fi | ePl ay function
to play only part of a sound in a file on disk. The Audi 0Sel ect i on data type defines an
audio selection record.

TYPE Audi 0Sel ection =
PACKED RECORD

uni t Type: Longl nt ; {type of time unit}

sel Start: Fi xed; {starting point of selection}

sel End: Fi xed; {endi ng poi nt of selection}
END;

Field descriptions

uni t Type The type of unit of time used in the sel St art and sel End fields.
You can set this to seconds by specifying the constant
uni t TypeSeconds.

sel Start The starting point in seconds of the sound to play. If sel Start is
greater than sel End, SndSt art Fi | ePl ay returns an error.

sel End The ending point in seconds of the sound to play.

Use a constant to specify the unit type.

CONST
uni t TypeSeconds = $0000; {seconds}
uni t TypeNoSel ecti on = $FFFF; {no sel ection}

If the value in the uni t Type field is uni t TypeNoSel ect i on, then the values in the
sel Start and sel End fields are ignored and the entire sound plays. Alternatively, if
you wish to play an entire sound, you can pass Nl L instead of a pointer to an audio
selection record to the SndSt ar t Fi | ePl ay function.

Sound Manager Reference

CHAPTER 2

Sound Manager

Sound Channel Status Records

To obtain information about a sound channel, you can pass a pointer to a sound channel
status record to the SndChannel St at us function. The SCSt at us data type defines a
sound channel status record.

TYPE SCSt atus =

RECORD
scStartTi me: Fi xed; {starting tine for play from di sk}
ScEndTi ne: Fi xed; {ending tine for play from disk}
scCurrent Ti ne: Fi xed; {current tine for play from di sk}
scChannel Busy: Bool ean; {TRUE i f channel is processing cnds}
scChannel Di sposed: Bool ean; {reserved}
scChannel Paused: Bool ean; {TRUE if channel is paused}
scUnused: Bool ean; {unused}
scChannel Attri butes: Longl nt; {attributes of this channel}
scCPULoad: Longl nt; {CPU |l oad for this channel}

END;

Field descriptions

scStart Ti me If the Sound Manager is playing from disk through the specified
sound channel, then scSt ar t Ti me is the starting time in seconds
from the beginning of the sound for the play from disk. Otherwise,
scStart Ti ne is 0.

scEndTi e If the Sound Manager is playing from disk through the specified
sound channel, then scEndTi ne is the ending time in seconds from
the beginning of the sound for the play from disk. Otherwise,
SCcEndTi e is 0.

scCurrent Time If the Sound Manager is playing from disk through the specified
sound channel, then scCur r ent Ti ne is the current time in
seconds from the beginning of the disk play. Otherwise,
scCurrent Ti ne is 0. The Sound Manager updates the value of this
field only periodically, and you should not rely on the accuracy of
its value.

scChannel Busy If the specified channel is currently processing sound commands,
then scChannel Busy is TRUE; otherwise, scChannel Busy is
FALSE.

scChannel Di sposed
Reserved for use by Apple Computer, Inc.

scChannel Paused
If the Sound Manager is playing from disk through the specified
sound channel and the play from disk is paused, then
scChannel Paused is TRUE; otherwise, scChannel Paused is
FALSE. This field is also TRUE if the channel was paused with the
pauseCnd sound command.

scUnused Reserved for use by Apple Computer, Inc.

Sound Manager Reference 2-101

Jabeuel\ punos n

CHAPTER 2

Sound Manager

scChannel Attri butes

scCPULoad

The current attributes of the specified channel. These attributes are
in the channel initialization parameters format. The value returned
in this field is always identical to the value passed in thei ni t
parameter to SndNewChannel .

The CPU load for the specified channel. You should not rely on the
value in this field.

You can mask out certain values in the scChannel At t ri but es field to determine how
a channel has been initialized.

CONST
i ni t PanMask

i ni t SRat eMask
i ni t StereoMask

i ni t CompMask

= $0003; {mask for right/left pan val ues}
= $0030; {mask for sanple rate val ues}

= $00Co; {mask for nono/stereo val ues}

= $FFOO0; {mask for conpression |Ds}

Sound Manager Status Records

2-102

You can use the SndManager St at us function to get a Sound Manager status record,
which gives information on the current CPU loading caused by all open channels of
sound. The SMBt at us data type defines a Sound Manager status record.

TYPE SMst atus =

PACKED RECCRD

snmivaxCPULoad: I nt eger; {maxi mum | oad on all channel s}

smNuntChannel s: I nt eger; {nunber of allocated channel s}

smCur CPULoad: I nt eger; {current load on all channel s}
END;

Field descriptions
smvaxCPULoad

smNuntChannel s

snmCur CPULoad

IMPORTANT

The maximum CPU load that the Sound Manager will not exceed
when allocating channels. The smvVaxCPULoad field is set to a
default value of 100 when the system starts up.

The number of sound channels that are currently allocated by all
applications. This does not mean that the channels allocated are
being used, only that they have been allocated and that CPU
loading is being reserved for these channels.

The CPU load that is being taken up by currently allocated channels.

Although you can use the information contained in the Sound Manager
status record to determine how many channels are allocated, you should
not rely on the information in the smvax CPULoad or snCur CPULoad
field. To determine whether the Sound Manager can create a new
channel, simply call the SndNewChannel function, which returns

an appropriate result code if it is unable to allocate a new channel. a

Sound Manager Reference

CHAPTER 2

Sound Manager

Sound Channel Records

The Sound Manager maintains a sound channel record to store information about each
sound channel that you allocate directly by calling the SndNewChannel function or
indirectly by passing a NI L channel to a high-level Sound Manager routine like the
SndPl ay function. The SndChannel data type defines a sound channel record.

TYPE SndChannel =
PACKED RECORD

next Chan: SndChannel Ptr; {pointer to next channel}
firstMd: Ptr; {used internally}
cal | Back: ProcPtr; {pointer to callback procedure}
user | nf o: Longl nt ; {free for application's use}
wai t: Longl nt ; {used internally}
cndl nProgress: SndConmand; {used internally}
fl ags: I nt eger; {used internally}
gLengt h: I nt eger; {used internally}
gHead: I nt eger; {used internally}
gTail : I nt eger; {used internally}
gueue: ARRAY[0. . st dQ.engt h-1] OF SndComand
END;

Field descriptions

next Chan A pointer to the next sound channel in a single queue of channels
that the Sound Manager maintains for all applications.

firstMd Used internally.

cal | Back A pointer to the callback procedure associated with the sound
channel. See page 2-152 for information on this callback procedure.

userinfo A value that your application can use to store information.

wai t Used internally.

cndl nProgress Used internally.

fl ags Used internally.

gLengt h Used internally.

gHead Used internally.

gTai | Used internally.

queue The sound commands pending for the sound channel.

The only field of the sound channel record that you are likely to need to access directly is
the user | nf o field. This field is useful if you need to pass a value to a Sound Manager
callback procedure or completion routine. For example, you might pass the value stored
in the A5 register so that your callback procedure can access your application’s global
variables. Or, you might store a handle to sound data here so that a routine that disposes
of an allocated channel can also release the sound data that the channel played.

In rarer instances, you might need to access the cal | Back field of the sound channel
record directly. Ordinarily, you set this field by specifying a callback procedure when

Sound Manager Reference 2-103

Jabeuel\ punos n

CHAPTER 2

Sound Manager

you call the ShdNewChannel function. However, you can change the callback procedure
associated with a channel by changing this field directly. The Sound Manager will then
execute the procedure you specify in this field whenever the channel processes a

cal | BackCnd command.

WARNING

You should not attempt to manipulate all open sound channels by using
the next Chan field to walk the sound channel queue. The queue might
contain channels opened by other applications. If you need to perform
some operation on all sound channels that your application has
allocated, you should maintain your own data structure that keeps track
of your application’s channels. a

Sound Header Records

2-104

Sound resources often contain sampled-sound data as well as sound commands. The
sound data is contained in the last field of the sound header. You can access a sound
header record to find information about sampled-sound data. The standard sound
header is used only for simple monophonic sounds. The SoundHeader data type
defines a sampled sound header record.

TYPE SoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
| engt h: Longl nt ; {nunber of sanples in array}
sanpl eRat e: Fi xed; {sanpl e rate}
| oopStart: Longl nt; {l oop poi nt begi nni ng}
| oopEnd: Longl nt ; {l oop poi nt endi ng}
encode: Byt e; {sanmpl e' s encodi ng option}
baseFrequency: Byte; {base frequency of sanpl e}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

Field descriptions

sanpl ePt r A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the baseFr equency field,
then this field should be set to NI L. Otherwise, this field is a pointer
to the memory location of the sampled-sound data. (This might be
useful if you want to change some fields of a sound header but do
not want to modify a handle to a sound resource directly.)

| engt h The number of bytes of sound data.

sanpl eRat e The rate at which the sample was originally recorded. The Sound
Manager can play sounds sampled at any rate up to 64 kHz. The
values corresponding to the three most common sample rates
(11 kHz, 22 kHz, and 44 kHz) are defined by constants:

Sound Manager Reference

CHAPTER 2

Sound Manager

| oopSt art

| oopEnd

encode

baseFr equency

sanpl eAr ea

CONST
rat e4dkhz = $AC440000; {44100. 00000 Fi xed}
rat e22khz = $56EE8BA3; {22254. 54545 Fi xed}
ratellkhz = $2B7745D1,; {11127. 27273 Fi xed}

Note that the sample rate is declared as a Fi xed data type, but the
most significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

The starting point of the portion of the sampled sound header that
is to be used by the Sound Manager when determining the duration
of f reqDur at i onCnd. These loop points specify the byte numbers
in the sampled data to be used as the beginning and end points to
cycle through when playing the sound. The loop starting and
ending points are 0-based.

The end point of the portion of the sampled sound header that is to
be used by the Sound Manager when determining the duration of
freqbDur at i onCnd. If no looping is desired, set both | copSt ar t
and | oopEnd to 0.

The method of encoding used to generate the sampled-sound data.
The current encoding option values are

CONST
st dSH = $00; {standard sound header}
ext SH = $FF; {ext ended sound header}
cnpSH = $FE; {conmpressed sound header}

For a standard sound header, you should specify the constant

st dSH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFr equency values. The baseFr equency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the f r eqDur at i onCnd
command. Applications should not alter the baseFr equency field
of a sampled sound; to play the sample at different pitches, use
fregDurationCnd orfreqCnd.

If the value of sanpl ePt r is NI L, this field is an array of bytes,
each of which contains a value similar to the values in a wave-table
description. These values are interpreted as offset values, where $80
represents an amplitude of 0. The value $00 is the most negative
amplitude, and $FF is the largest positive amplitude. The samples
are numbered 1 through the value in the | engt h parameter.

If you need to create a sound header for sampled-sound data that your application has
recorded, then you should use the Set upSndHeader function, described in the chapter
“Sound Input Manager” in this book.

Sound Manager Reference 2-105

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Extended Sound Header Records

For sampled-sound data that is more complex than a standard sound header can
describe, the Sound Manager uses an extended sound header record. Sound data
described by such a header can be monophonic or stereo, but it cannot be compressed.

Most of the fields of the extended sound header correspond to fields of the sampled
sound header. However, the extended sound header allows the encoding of stereo
sound. The nunChannel s field contains the number of channels of sound recorded, and
the nunfr anes field contains the number of frames of sound recorded in each channel.
For more information on the format of sampled sound frames, see “Sound Files” on
page 2-81.

Note

The word “channel” can be confusing in this context, because a sound
resource containing polyphonic sound (that is, multichannel sound) can
be played on a single Sound Manager sound channel. Channel is a
general term for the portion of sound data that can be described by a
single sound wave. Monophonic sound is composed of a single channel.
Stereo sound (also called polyphonic sound) is composed of several
channels of sound played simultaneously. “Sound channel” is a term
specific to the Sound Manager. O

TYPE Ext SoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunChannel s: Longl nt ; {nunmber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}
| oopStart: Longl nt ; {I oop poi nt begi nni ng}
| oopENnd: Longl nt ; {l oop point endi ng}
encode: Byt e; {sanpl e's encodi ng option}
baseFr equency: Byt e; {base freqg. of original sanple}
nunfr ames: Longl nt; {total nunber of franes}
Al FFSanpl eRat e: Ext ended80; {rate of original sanple}
mar ker Chunk: Ptr; {reserved}
i nstrument Chunks: Ptr; {pointer to instrunent info}
AESRecor di ng: Ptr; {pointer to audio info}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
futureUsel: I nt eger; {reserved}
futureUse2: Longl nt; {reserved}
futureUse3: Longl nt ; {reserved}
futureUse4: Longl nt ; {reserved}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte;

END;

2-106 Sound Manager Reference

CHAPTER 2

Sound Manager

Field descriptions
sanpl ePtr

nuntChannel s
sanpl eRat e

| oopSt art

| oopENnd

encode

baseFr equency

nunfr ames

Al FFSanpl eRat e

mar ker Chunk

A pointer to the sampled-sound data. If the sampled sound is
located in memory immediately after the f ut ur eUse4 field, then
this field should be set to NI L. Otherwise, this field is a pointer to
the memory location of the sampled-sound data.

The number of channels in the sampled-sound data.

The rate at which the sample was originally recorded. The
approximate sample rates are shown in Table 2-1 on page 2-16. Note
that the sample rate is declared as a Fi xed data type, but the most
significant bit is not treated as a sign bit; instead, that bit is
interpreted as having the value 32,768.

The starting point of the portion of the extended sampled sound
header that is to be used by the Sound Manager when determining
the duration of f r eqDur at i onCrrd. These loop points specify the
byte numbers in the sampled data to be used as the beginning and
end points to cycle through when playing the sound. The loop
starting and ending points are 0-based.

The end point of the portion of the extended sampled sound header
that is to be used by the Sound Manager when determining the
duration of f r eqDur at i onCnd.

The method of encoding used to generate the sampled-sound data.
For an extended sound header, you should specify the constant
ext SH. Encode option values in the ranges 0 through 63 and 128 to
255 are reserved for use by Apple. You are free to use numbers in
the range 64 through 127 for your own encode options.

The pitch at which the original sample was taken. This value must
be in the range 1 through 127. Table 2-2 on page 2-43 lists the
possible baseFr equency values. The baseFr equency value
allows the Sound Manager to calculate the proper playback rate of
the sample when an application uses the f r eqDur at i onCnd
command. Applications should not alter the baseFr equency field
of a sampled sound; to play the sample at different pitches, use
fregDurati onCnd or f reqCnd.

The number of frames in the sampled-sound data. Each frame
contains numChannel s bytes for 8-bit sound data.

The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.

i nst runment Chunks

AESRecor di ng
sanpl eSi ze
futureUsel
futureUse2
futureUse3

Sound Manager Reference

Instrument information.

Information related to audio recording devices.
The number of bits in each sample frame.
Reserved.

Reserved.

Reserved.

2-107

Jabeuel\ punos n

CHAPTER 2

Sound Manager

futureUse4 The four f ut ur eUse fields are reserved for use by Apple. To
maintain compatibility with future releases of system software, you
should always set these fields to 0.

sanpl eAr ea An array of interleaved sample points, each of which contains a
value similar to the values in a wave-table description. For 8-bit
sampled-sound data, these values are interpreted as offset values,
where $80 represents an amplitude of 0. The value $00 is the largest
negative amplitude, and $FF is the largest positive amplitude.

To compute the total number of bytes of a sample, multiply the values in the
nuntChannel s, nunfr anmes, and sanpl eSi ze fields and divide by the number of bytes
per sample (typically 8 or 16).

Note

Although extended sound headers (and compressed sound headers,
described next) support the storage of 16-bit sound, only versions 3.0
and later of the Sound Manager can play 16-bit sounds. If your
application uses 16-bit sound, you must convert it to 8-bit sound before
earlier versions of the Sound Manager can play it. O

Compressed Sound Header Records

To describe compressed sampled-sound data, the Sound Manager uses a compressed
sound header record. Compressed sound headers include all of the essential fields of
extended sound headers in addition to several fields that pertain to compression. The
CpSoundHeader data type defines the compressed sound header record.

TYPE CnpSoundHeader =
PACKED RECORD

sanpl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunthannel s: Longl nt ; {nunber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}

| oopStart: Longl nt; {l oop poi nt begi nni ng}

| oopEnd: Longl nt ; {l oop poi nt endi ng}

encode: Byt e; {sanmpl e' s encodi ng option}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr ames: Longl nt ; {length of sanple in franes}

Al FFSanpl eRat e: Ext ended80; {rate of original sanple}

mar ker Chunk: Ptr; {reserved}

formt: OSType; {data format type}

futureUse2: Longl nt; {reserved}

stateVars: StateBl ockPtr; {pointer to StateBl ock}

| ef t Over Sanpl es: Left OverBl ockPtr;

{pointer to LeftOverBl ock}

conpr essi onl D I nt eger; {1 D of conpression al gorithn}
packet Si ze: I nt eger; {nunber of bits per packet}
snt hl D: I nt eger; {unused}

2-108 Sound Manager Reference

sanpl eSi ze:
sanpl eAr ea:

END;

CHAPTER 2

Sound Manager

Field descriptions

sanpl ePtr

numChannel s
sanpl eRat e

| oopSt art

| oopEnd
encode

baseFr equency

numr ames

Al FFSanpl eRat e

mar ker Chunk

f or mat

Sound Manager Reference

I nt eger; {bits in each sanple point}
PACKED ARRAY[0..0] OF Byte;

The location of the compressed sound frames. If sanpl ePtr is NI L,
then the frames are located in the sanpl eAr ea field of the
compressed sound header. Otherwise, sanpl ePt r points to a
buffer that contains the frames.

The number of channels in the sample.

The sample rate at which the frames were sampled before
compression. The approximate sample rates are shown in Table 2-1
on page 2-16. Note that the sample rate is declared as a Fi xed data
type, but the most significant bit is not treated as a sign bit; instead,
that bit is interpreted as having the value 32,768.

The beginning of the loop points of the sound before compression.
The loop starting and ending points are 0-based.

The end of the loop points of the sound before compression.

The method of encoding (if any) used to generate the
sampled-sound data. For a compressed sound header, you should
specify the constant cnpSH. Encode option values in the ranges

0 through 63 and 128 to 255 are reserved for use by Apple. You are
free to use numbers in the range 64 through 127 for your own
encode options.

The pitch of the original sampled sound. It is not used by

buf f er Cnd. If you wish to make use of baseFr equency with a
compressed sound, you must first expand it and then play it with
soundCnd and f r eqDur at i onCnd.

The number of frames contained in the compressed sound header.
When you store multiple channels of noncompressed sound, store
them as interleaved sample frames (as in AIFF). When you store
multiple channels of compressed sounds, store them as interleaved
packet frames.

The sample rate at which the frames were sampled before
compression, as expressed in the 80-bit extended data type
representation.

Synchronization information. The mar ker Chunk field is not
presently used and should be set to NI L.

The data format type. This field contains a value of type CSType
that defines the compression algorithm, if any, used to generate the
audio data. For example, for data generated using MACE 3:1
compression, this field should contain the value ' MAC3' . See

page 2-86 for a list of the format types defined by Apple. This field
is used only if the conpr essi onl Dfield contains the value

fi xedConpr essi on.

2-109

Jabeuel\ punos n

2-110

CHAPTER 2

Sound Manager

futureUse2 This field is reserved for use by Apple. To maintain compatibility
with future releases of system software, you should always set this
field to 0.

stateVars A pointer to a state block. This field is used to store the state

variables for a given algorithm across consecutive calls. See “State
Blocks” on page 2-119 for a description of the state block.

| ef t Over Sanpl es
A pointer to a leftover block. You can use this block to store samples
that will be truncated across algorithm invocations. See “Leftover
Blocks” on page 2-119 for a description of the leftover block.

conmpressi onl D The compression algorithm used on the samples in the compressed
sound header. You can use a constant to define the compression
algorithm.

CONST
vari abl eConpr essi on
= -2; {variable-ratio conpr.}

fi xedConpression = -1; {fixed-ratio conpr.}

not Conpr essed = 0; {nonconpressed sanpl es}
t hreeToOne = 3; {3:1 conpressed sanpl es}
si xToOne = 4; {6:1 conpressed sanpl es}

The constant f i xedConpr essi on is available only with Sound
Manager versions 3.0 and later. If the conpr essi onl Dfield
contains the value f i xedConpr essi on, the Sound Manager reads
the f or mat field to determine the compression algorithm used to
generate the compressed data. Otherwise, the Sound Manager reads
the conpr essi onl Dfield. Apple reserves the right to use
compression IDs in the range 0 through 511. Currently the constant
vari abl eConpr essi on is not used by the Sound Manager.

packet Si ze The size, in bits, of the smallest element that a given expansion
algorithm can work with. You can use a constant to define the
packet size.

CONST
si xToOnePacket Si ze
t hr eeToOnePacket Si ze

8, {size for 6:1}
16; {size for 3:1}

Beginning with Sound Manager version 3.0, you can specify the
value 0 in this field to instruct the Sound Manager to determine the
packet size itself.

snthl D This field is unused. You should set it to 0.

sanpl eSi ze The size of the sample before it was compressed. The samples
passed in the compressed sound header should always be
byte-aligned, and any padding done to achieve byte alignment
should be done from the left with zeros.

Sound Manager Reference

CHAPTER 2

Sound Manager

sanpl eAr ea The sample frames, but only when the sanpl ePt r field is NI L.
Otherwise, the sample frames are in the location indicated
by sanmpl ePtr.

Sound Double Buffer Header Records

You must fill in a sound double buffer header record and two sound double
buffer records if you wish to manage your own double buffers. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf f er Header =
PACKED RECORD

dbhNuntChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanmpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {ID of conpression algorithnt
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sampl e rate}
dbhBufferPtr: ARRAY[0. . 1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}

END;

Sound Manager versions 3.0 and later support custom compression and decompression
algorithms by defining the revised sound double buffer header record, of type

SndDoubl eBuf f er Header 2. It’s identical to the SndDoubl eBuf f er Header data type
except that it contains the dbhFor mat field at the end.

TYPE SndDoubl eBuf f er Header 2 =
PACKED RECORD

dbhNunChannel s: I nt eger; {nunmber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D I nt eger; {1 D of conpression algorithn
dbhPacket Si ze: I nt eger; {nunmber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBufferPtr: ARRAY[0. .1] OF SndDoubl eBufferPtr

{pointers to SndDoubl eBuf f er}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}
dbhFor mat : CSType; {signature of codec}

END;

Field descriptions

dbhNuntChannel s
The number of channels for the sound (1 for monophonic sound,
2 for stereo).

dbhSanpl eSi ze The sample size for the sound if the sound is not compressed. If the
sound is compressed, dbhSanpl eSi ze should be set to 0. Samples

Sound Manager Reference 2-111

Jabeuel\ punos n

CHAPTER 2

Sound Manager

that are 1-8 bits have a dbhSanpl eSi ze value of 8; samples that
are 9-16 bits have a dbhSanpl eSi ze value of 16. Currently, only
8-bit samples are supported. For further information on sample
sizes, refer to the AIFF specification.

dbhConpr essi onl D

dbhPacket Si ze

dbhSanpl eRat e

dbhBufferPtr

dbhDoubl eBack

dbhFor mat

The compression identification number of the compression
algorithm, if the sound is compressed. If the sound is not
compressed, dbhConpr essi onl Dshould be set to 0.

The packet size in bits for the compression algorithm specified by
dbhConpr essi onl D, if the sound is compressed.

The sample rate for the sound. Note that the sample rate is declared
as a Fi xed data type, but the most significant bit is not treated as a
sign bit; instead, that bit is interpreted as having the value 32,768.

An array of two pointers, each of which should point to a valid
SndDoubl eBuf f er record.

A pointer to the application-defined routine that is called when the
double buffers are switched and the exhausted buffer needs to
be refilled.

The data format type. This field contains a value of type OSType
that defines the compression algorithm, if any, to be used to
decompress the audio data. For example, for data generated using
MACE 3:1 compression, this field should contain the value ' MAC3' .
See page 2-86 for a list of the format types defined by Apple. This
field is used only if the dbhConpr essi onl Dfield contains the
value f i xedConpr essi on.

The dbhBuf f er Pt r array contains pointers to two sound double buffer records, whose
format is defined below. These are the two buffers between which the Sound Manager
switches until all the sound data has been sent into the sound channel. When you make
the call to SndPI ayDoubl eBuf f er, the two buffers should both already contain a
nonzero number of frames of data.

Sound Double Buffer Records

You must fill in a sound double buffer header record if you wish to manage your own
double buffers. The dbhBuf f er Pt r field of the sound double buffer header record
references two sound double buffer records, which you must also fill out. The
SndDoubl eBuf f er Header data type defines a sound double buffer header.

TYPE SndDoubl eBuf fer =
PACKED RECORD
dbNuntr anes: Longl nt;
dbFl ags: Longl nt;
dbUser | nf o: ARRAY] 0.

{number of franes in buffer}
{buffer status flags}

. 1] OF Longlnt; {for application's use}

dbSoundDat a: PACKED ARRAY[0..0] OF Byte; {array of data}

END;

2-112 Sound Manager Reference

CHAPTER 2

Sound Manager

Field descriptions

dbNunfr anes The number of frames in the dbSoundDat a array.

dbFl ags Buffer status flags.

dbUser | nfo Two long words into which you can place information that you
need to access in your doubleback procedure.

dbSoundDat a A variable-length array. You write samples into this array, and the

Sound Manager reads samples out of this array.

The buffer status flags field for each of the two buffers can contain either of these values
that your doubleback procedure must set when appropriate:

CONST
dbBuf f er Ready = $00000001;
dbLast Buf f er = $00000004;

Jabeuel\ punos n

All other bits in the dbFI ags field are reserved by Apple; your application should not
modify them.

Chunk Headers

Every chunk in an AIFF or AIFF-C file contains a chunk header that defines
characteristics of the chunk. The ChunkHeader data type defines a chunk header.

TYPE ChunkHeader =

RECORD

ckl D: | O {chunk type |D}

ckSi ze: Longlnt; {nunmber of bytes of data}
END;

Field descriptions

ckl D The ID of the chunk. An ID is a 32-bit concatenation of any four
printable ASCII characters in the range ' ' (space character, ASCII
value $20) through ' ~' (ASCII value $7E). Spaces cannot precede
printing characters, but trailing spaces are allowed. Control
characters are not allowed. See “Chunk IDs” on page 2-98 for a list
of the currently recognized chunk IDs.

ckSi ze The size of the chunk in bytes, not including the ckl Dand ckSi ze
fields.

Form Chunks

All sound files begin with a Form Chunk. This chunk defines the type and size of the file
and can be thought of as enclosing the remaining chunks in the sound file. The
Cont ai ner Chunk data type defines a Form Chunk.

Sound Manager Reference 2-113

CHAPTER 2

Sound Manager

TYPE Cont ai ner Chunk =

RECORD
ckl D:
ckSi ze:
f or mlype:
END;

Field descriptions
ckl D
ckSi ze

formlype

| O {' FORM }
Longl nt; {nunber of bytes of data}
I D {type of file}

The ID of this chunk. For a Form Chunk, this ID is ' FORM .

The size of the data portion of this chunk. Note that the data portion
of a Form Chunk is divided into two parts, f or nilype and the
remaining chunks of the sound file.

The type of audio file. For AIFF files, f or nType is ' Al FF' . For
AIFF-C files, f or nMType is ' Al FC .

The size of an entire sound file is ckSi ze+8, because the ckSi ze field incorporates the
size of all chunks of the sound file, except the sizes of the ckl Dand ckSi ze fields of the

Form Chunk itself.

Format Version Chunks

2-114

AIFF-C files each contain exactly one Format Version Chunk, but files of type AIFF do
not contain any. You can examine the Format Version Chunk to ensure that your
application can process an AIFF-C file. The For mat Ver si onChunk data type defines
a Format Version Chunk.

TYPE For mat Ver si onChunk =

RECORD

ckl D

ckSi ze:

ti mest anp:
END;

Field descriptions
ckl D

ckSi ze

ti mestanp

| O {' FVER }
Longl nt ; {4}
Longl nt; {date of format version}

The ID of this chunk. For a Format Version Chunk, this ID is
'FVER .

The size of the data portion of this chunk. This value is always 4 in
a Format Version Chunk because the t i mest anp field is 4 bytes
long (the 8 bytes used by the ckl Dand ckSi ze fields are not
included).

An indication of when the format version for this kind of file was
created. The value indicates the number of seconds between
midnight, January 1, 1904, and the time at which the AIFF-C file
format was created.

Sound Manager Reference

CHAPTER 2

Sound Manager

Common Chunks

Every AIFF and AIFF-C file contains a Common Chunk that defines some fundamental
characteristics of the sampled sound contained in the file. The format of the Common
Chunk is different for AIFF and AIFF-C files. As a result, you need to determine the type
of file format (by inspecting the f or nirype field of the Form Chunk) before reading the
Common Chunk.

For AIFF files, the CormonChunk data type defines a Common Chunk. I
N

TYPE CommonChunk =

RECORD &
cki D: | D; {* COWM } 3
ckSi ze: Longl nt; {size of chunk data} §
nunChannel s: I nt eger; {nunber of channel s} §
nunSanpl eFranes: Longlnt; {nunber of sanple franes} g
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunmber of franes per second}

END;

Field descriptions
ckl D The ID of this chunk. For a Common Chunk, this ID is ' COVM .

ckSi ze The size of the data portion of this chunk. In AIFF files, this field is
always 18 because the 8 bytes used by the ckl Dand ckSi ze fields
are not included.

nunChannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunBanpl eFr anmes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is nunmChannel s * nunBanpl eFr anes.

sanpl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

Extended Common Chunks

An ATFF-C file contains an extended Common Chunk that includes all of the fields of
the Common Chunk, but adds two fields that describe the type of compression (if any)
used on the audio data. The Ext CommonChunk data type defines an extended
Common Chunk.

Sound Manager Reference 2-115

CHAPTER 2

Sound Manager

TYPE Ext CommpbnChunk =

RECORD
ckl D | O {' cOwW }
ckSi ze: Longl nt; {size of chunk data}
nunChannel s: I nt eger; {nunber of channel s}
nunSanpl eFranes: Longlnt; {nunber of sanple franes}
sanpl eSi ze: I nt eger; {nunber of bits per sanpl e}
sanpl eRat e: Ext ended; {nunber of franes per second}
conpressi onType: 1D {compression type |D}

conpressi onNanme: PACKED ARRAY[0..0] OF Byte;
{conpressi on type nane}
END;

Field descriptions

ckl D The ID of this chunk. For an extended Common Chunk, this ID
is' COWM .
ckSi ze The size of the data portion of this chunk. For an extended

Common Chunk, this size is 22 plus the number of bytes in the
conpr essi onNane string.

nunChannel s The number of audio channels contained in the sampled sound. A
value of 1 indicates monophonic sound, a value of 2 indicates stereo
sound, a value of 4 indicates four-channel sound, and so forth.

nunBanpl eFr anes
The number of sample frames in the Sound Data Chunk. Note that
this field contains the number of sample frames, not the number of
bytes of data and not the number of sample points. For
noncompressed sound data, the total number of sample points in
the file is nunmChannel s * nunBanpl eFr anes.

sanpl eSi ze The number of bits in each sample point of noncompressed sound
data. The sanpl eSi ze field can contain any integer from 1 to 32.
For compressed sound data, this field indicates the number of bits
per sample in the original sound data, before compression.

sanpl eRat e The sample rate at which the sound is to be played back, in sample
frames per second.

conpressi onType
The ID of the compression algorithm, if any, used on the sound
data. Compression algorithms supplied by Apple have the

following types:

CONST
NoneType = ' NONE' ;
ACE2Type = ' ACE2';
ACE8Type = " ACES';
MACE3Type = "' MAC3';
MACE6Type = ' MACE' ;

2-116 Sound Manager Reference

CHAPTER 2

Sound Manager

You can define your own compression types, but you should
register them with Apple.

conpr essi onNamne
A human-readable name for the compression algorithm ID
specified in the conpr essi onType field. If the number of bytes in
this field is odd, then it is padded with the digit 0. Compression
algorithms supplied by Apple have the following names:

CONST
NoneNare = 'not conpressed';

ACE2t o1Narme = "ACE 2-to-1'; o

ACESt 03Nane = ' ACE 8-to0-3'; 5

MACE3t o1Nane = '"MACE 3-to-1'; z

MACEGt o1Nane = "MACE 6-to-1"; é

@

You can define your own compression types, but you should
register them with Apple.

Sound Data Chunks

AIFF and AIFF-C files generally contain a Sound Data Chunk that contains the actual
sampled-sound data. The SoundDat aChunk data type defines a Sound Data Chunk.

TYPE SoundDat aChunk =

RECORD

ckl D | D {' SSND }

ckSi ze: Longl nt; {size of chunk data}

of f set: Longl nt ; {of fset to sound data}

bl ockSi ze: Longlnt; {size of alignnent blocks}
END;

Field descriptions

ckl D The ID of this chunk. For a Sound Data Chunk, this ID is' SSND' .

ckSi ze The size of the data portion of this chunk. This size does not include
the 8 bytes occupied by the values in the ckl Dand the ckSi ze
fields.

of f set An offset (in bytes) to the beginning of the first sample frame in the

chunk data. Most applications do not need to use the offset field
and should set it to 0.

bl ockSi ze The size (in bytes) of the blocks to which the sound data is aligned.
This field is used in conjunction with the of f set field for aligning
sound data to blocks. As with the of f set field, most applications
do not need to use the bl ockSi ze field and should set it to 0.

The sampled-sound data follows the bl ockSi ze field. If the data following the
bl ockSi ze field contains an odd number of bytes, a pad byte with a value of 0 is added
at the end to preserve an even length for this chunk. If there is a pad byte, it is not

Sound Manager Reference 2-117

CHAPTER 2

Sound Manager

included in the ckSi ze field. For information on the format of the sampled-sound data,
see “Sound Files” on page 2-81.

Version Records

2-118

The functions SndSoundManager Ver si on and MACEVer si on return version
information using a version record. The NumVer si on data type defines a version record.

TYPE NunVer sion =
PACKED RECORD
CASE | NTEGER OF

0:
(rmaj or Rev: Si gnedByt e; {maj or revision |level in BCD}
m nor AndBugRev: Si gnedByt €; {m nor revision |evel}
st age: Si gnedByt e; {devel opnment st age}
nonRel Rev: Si gnedByt e) ; {nonrel eased revision |evel}
1:
(version: Longl nt); {all 4 fields together}
END;
IMPORTANT

A version record has the same structure as the first four fields of a
version resource (a resource of type ' vers'). See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for complete
information about version resources. a

Field descriptions

maj or Rev The major revision level. This field is a signed byte in binary-coded
decimal format.

nm nor AndBugRev
The minor revision level. This field is a signed byte in binary-coded
decimal format.

st age The development stage. You should use the following constants to
specify a development stage:

CONST
devel opSt age = $20; {preal pha rel ease}
al phaSt age = $40; {al pha rel ease}
bet aSt age = $60; {beta rel ease}
fi nal St age = $80; {final rel ease}
nonRel Rev The revision level of a prereleased version.
versi on Along integer that contains all four version fields.

Sound Manager Reference

CHAPTER 2

Sound Manager

Leftover Blocks

The | ef t Over Sanpl es field of a compressed sound header contains a pointer to a
leftover block, defined by the Lef t Over Bl ock data type.

TYPE LeftOverBl ock =

RECORD

count : Longl nt;

sanpl eAr ea: PACKED ARRAY[0. .| eft Over Bl ockSi ze - 1] OF Byte;
END;

Field descriptions

count The number of bytes in the sanpl eAr ea field.

sanpl eAr ea An array of bytes. This field contains samples that are truncated
across invocations of the compression algorithm. The size of this
field is defined by a constant.

Jabeuel\ punos n

CONST
| eft Over Bl ockSi ze = 32;

State Blocks

The st at eVar s field of a compressed sound header contains a pointer to a state block,
defined by the St at eBl ock data type.

TYPE StateBl ock =
RECORD

stateVar: ARRAY[0. . st at eBl ockSi ze - 1] OF Integer;
END;

Field descriptions

st at eVar An array of integers. This field contains state variables that need to
be preserved across invocations of the compression algorithm. The
size of this field is defined by a constant.

CONST
st at eBl ockSi ze = 64;

Sound Manager Routines

This section describes the routines provided by the Sound Manager. You can use these
routines to

= play sound resources
= play sounds stored in files directly from disk

» allocate and release sound channels

Sound Manager Reference 2-119

CHAPTER 2

Sound Manager

s send commands to a sound channel

= obtain information about the Sound Manager, a sound channel, all sound channels, or
the system alert sound’s status

= compress and expand audio data
= manage the reading and writing of double sound buffers

The section “Application-Defined Routines” on page 2-151 describes routines that your
application might need to define, including callback procedures, completion routines,
and doubleback procedures.

Assembly-Language Note

Most Sound Manager routines are accessed through the

_SoundDi spat ch selector. However, the SndAddMbdi fi er,
SndCont r ol , SndbDi sposeChannel , SndDoConmand,

SndDol mmedi at e, SndNewChannel , and SndPl ay functions and the
SysBeep procedure are accessed through their own trap macros. See
“Summary of the Sound Manager,” which begins on page 2-157, for a
list of trap selector numbers. O

Playing Sound Resources

You can use the SysBeep procedure to play the system alert sound. Alert sounds are
stored in the System file as format1' snd ' resources. You can use the SndP| ay
function to play the sounds that are stored in any ' snd ' resource, either format 1 or
format 2.

The SysBeep and SndPl ay routines are the highest-level sound routines that the
Sound Manager provides. Depending on the needs of your application, you might be
able to accomplish all desired sound-related activity simply by using SysBeep to
produce the system alert sound or by using SndPl ay to play other sounds that are
stored as' snd ' resources.

SysBeep
You can use the SysBeep procedure to play the system alert sound.
PROCEDURE SysBeep (duration: Integer);
duration The duration (in ticks) of the resulting sound. This parameter is ignored
except on a Macintosh Plus, Macintosh SE, or Macintosh Classic when the
system alert sound is the Simple Beep. The recommended duration is 30
ticks, which equals one-half second.
2-120 Sound Manager Reference

DESCRIPTION

CHAPTER 2

Sound Manager

The SysBeep procedure causes the Sound Manager to play the system alert sound at its
current volume. If necessary, the Sound Manager loads into memory the sound resource
containing the system alert sound and links it to a sound channel. The user selects a
system alert sound in the Alert Sounds subpanel of the Sound control panel.

The volume of the sound produced depends on the current setting of the system alert
sound volume, which the user can adjust in the Alert Sounds subpanel of the Sound
control panel. The system alert sound volume can also be read and set by calling the

Get SysBeepVol une and Set SysBeepVol une routines. If the volume is set to 0 (silent)
and the system alert sound is enabled, calling SysBeep causes the menu bar to blink
once.

SPECIAL CONSIDERATIONS

SEE ALSO

SndPlay

Because the SysBeep procedure moves memory, you should not call it at interrupt time.

For information on enabling and disabling the system alert sound, see the description of
SndGet SysBeepSt at e and SndGet SysBeepSt at e on page 2-137. For information on
reading or adjusting the system alert sound volume, see “Controlling Volume Levels”
beginning on page 2-139.

You can use the SndPI ay function to play a sound resource that your application has
loaded into memory.

FUNCTI ON SndPl ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate a
sound channel in your application’s heap zone.

sndHdl A handle to the sound resource to play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). This parameter is
ignored (and the sound plays synchronously) if NI L is passed in the first
parameter.

Sound Manager Reference 2-121

Jabeuel\ punos n

DESCRIPTION

CHAPTER 2

Sound Manager

The SndPl ay function attempts to play the sound located at sndHdl , which is expected
to have the structure of a format 1 or format2' snd ' resource. If the resource has not
yet been loaded, the SndPl ay function fails and returns the r esPr obl emresult code.

All commands and data contained in the sound handle are then sent to the channel. Note
that you can pass SndPl ay a handle to some data created by calling the Sound Input
Manager’s SndRecor d function as well as a handle to an actual ' snd ' resource that
you have loaded into memory.

WARNING

In some versions of system software prior to system software version

7.0, the SndPl ay function will not work properly with sound resources

that specify the sound data type twice. This might happen if a resource

specifies that a sound consists of sampled-sound data and an

application does the same when creating a sound channel. For more

information on this problem, see “Allocating Sound Channels” on

page 2-20. a

The chan parameter is a pointer to a sound channel. If chan is not NI L, it is used as

a valid channel. If chan is NI L, an internally allocated sound channel is used. If you

do supply a sound channel pointer in the chan parameter, you can play the sound
asynchronously. When a sound is played asynchronously, a callback procedure can be
called when a cal | BackCnd command is processed by the channel. (This procedure

is the callback procedure supplied to SndNewChannel .) See “Playing Sounds
Asynchronously” on page 2-46 for more information on playing sounds asynchronously.
The handle you pass in the sndHdl parameter must be locked for as long as the sound is
playing asynchronously.

If aformat1' snd ' resource does not specify which type of sound data is to be played,
SndPl ay defaults to square-wave data. SndPI ay also supports format2"' snd '
resources using sampled-sound data and a buf f er Cnd command. Note that to use
SndPl ay and sampled-sound data with a format1' snd ' resource, the resource must
include a buf f er Cmd command.

SPECIAL CONSIDERATIONS

RESULT CODES

2-122

Because the SndPI ay function moves memory, you should not call it at interrupt time.

nokErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available
resProbl em —204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable
badFor mat —-206 Resource is corrupt or unusable
Sound Manager Reference

CHAPTER 2

Sound Manager

SEE ALSO
For an example of how to play a sound resource using the SndPI ay function, see the
chapter “Introduction to Sound on the Macintosh” in this book.
For information on playing a sound resource without using the SndPl ay function, see
“Playing Sounds Using Low-Level Routines” on page 2-61.

Playing From Disk

Use the SndSt ar t Fi | ePl ay, SndPauseFi | ePl ay, and SndSt opFi | ePl ay functions
to manage a continuous play from disk.

Jabeuel\ punos n

SndStartFilePlay

You can call the SndSt art Fi | ePl ay function to initiate a play from disk.

FUNCTI ON SndStartFil ePlay (chan: SndChannel Ptr; fRef Num |Integer;
resNum Integer; bufferSize: Longlnt;
theBuffer: Ptr;

t heSel ecti on: Audi oSel ecti onPtr;
t heConpl etion: ProcPktr;
async: Bool ean): OSErr;

chan A pointer to a valid sound channel. You can pass NI L instead of a pointer
to a sound channel if you want the Sound Manager to internally allocate
a sound channel in your application’s heap zone.

f Ref Num The file reference number of the AIFF or AIFF-C file to play. To play a
sound resource rather than a sound file, this field should be 0.

resNum The resource ID number of a sound resource to play. To play a sound file
rather than a sound resource, this field should be 0.

bufferSi ze
The number of bytes of memory that the Sound Manager is to use for
input buffering while reading in sound data. For SndSt art Fi | ePl ay to
execute successfully on the slowest Macintosh computers, use a buffer of
at least 20,480 bytes. You can pass the value 0 to instruct the Sound
Manager to allocate a buffer of the default size.

t heBuf f er A pointer to a buffer that the Sound Manager should use for input
buffering while reading in sound data. If this parameter is NI L, the Sound
Manager allocates two buffers, each half the size of the value specified in
the buf f er Si ze parameter. If this parameter is not NI L, the buffer
should be a nonrelocatable block of size buf f er Si ze.

t heSel ecti on
A pointer to an audio selection record that specifies which portion of a
sound should be played. You can pass NI L to specify that the Sound
Manager should play the entire sound.

Sound Manager Reference 2-123

DESCRIPTION

CHAPTER 2

Sound Manager

t heConpl eti on
A pointer to a completion routine that the Sound Manager calls when the
sound is finished playing. You can pass NI L to specify that the Sound
Manager should not execute a completion routine. This field is useful
only for asynchronous play.

async A Boolean value that indicates whether the sound should be played
asynchronously (TRUE) or synchronously (FALSE). You can play sound
asynchronously only if you allocate your own sound channel (using
SndNewChannel). If you pass NI L in the chan parameter and TRUE for
this parameter, the SndSt ar t Fi | ePl ay function returns the
badChannel result code.

The SndSt art Fi | ePl ay function begins a continuous play from disk on a sound
channel. The chan parameter is a pointer to the sound channel. If chan is not NI L, it is
used as a valid channel. If chan is NI L, an internally allocated sound channel is used for
play from disk. This internally allocated sound channel is not passed back to you.
Because SndPauseFi | ePl ay and SndSt opFi | ePl ay require a sound-channel pointer,
you must allocate your own channel if you wish to use those routines.

The sounds you wish to play can be stored either in a fileorinan' snd ' resource. If
you are playing a file, then f Ref Numshould be the file reference number of the file to be
played and the parameter r esNumshould be set to 0. If you are playing an' snd '
resource, then f Ref Numshould be set to 0 and r esNumshould be the resource ID
number (not the file reference number) of the resource to play.

WARNING

The SndSt ar t Fi | ePl ay function might not play ' snd ' resources
from disk correctly. In particular, the function will not execute correctly
if any resource in the resource file containing the ' snd ' resource you
wish to play has been changed through a call to the Wi t eResour ce
procedure and you have not updated the resource file using the

Updat eResFi | e procedure. To avoid this and other problems, you
should use the SndSt art Fi | ePl ay function to play only sound files. a

SPECIAL CONSIDERATIONS

Because the SndSt ar t Fi | ePl ay function moves memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

2-124

The trap macro and routine selector for the SndSt art Fi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $0D000008

Sound Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 2

Sound Manager

noErr 0 No error

not EnoughHar dwar eEr r -201 Insufficient hardware available

queueFul | -203 No room in the queue

badChannel —205 Channel is corrupt or unusable

badFor mat —206 Resource is corrupt or unusable

not EnoughBuf f er Space -207 Insufficient memory available

badFi | eFor mat —208 File is corrupt or unusable, or not AIFF or
AIFF-C

channel Busy -209 Channel is busy

buf f er sTooSnal | -210 Buffer is too small

si I nval i dConpr essi on —223 Invalid compression type

For an example of how to play a sound file, see the chapter “Introduction to Sound on
the Macintosh” in this book.

For information on the format of a completion routine, see “Completion Routines” on
page 2-151.

SndPauseFilePlay

DESCRIPTION

You can use the SndPauseFi | ePl ay function to toggle the state of a play from disk in
progress, just as you might use the pause button on an audiocassette tape player to
temporarily pause and then resume play.

FUNCTI ON SndPauseFi | ePl ay (chan: SndChannel Ptr): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt ar t Fi | ePl ay function.

The SndPauseFi | ePl ay function suspends the play from disk on the channel specified
by the chan parameter if that play from disk is not already paused; the function resumes
play if the play from disk is already paused.

The SndPauseFi | ePl ay function is used in conjunction with SndSt opFi | ePl ay to
control play from disk on a sound channel. Note that this call can be made only if your
application has already called SndSt ar t Fi | ePl ay with a valid sound channel. You
cannot use this function with a synchronous call to SndSt art Fi | ePl ay because, in that
case, program control does not return to the caller until after the sound has completely
finished playing.

If the channel specified by the chan parameter is not being used for play from disk, then
SndPauseFi | ePl ay returns the result code channel Not Busy. If the channel is busy

Sound Manager Reference 2-125

Jabeuel\ punos n

CHAPTER 2

Sound Manager

and paused, then play from disk is resumed. If the channel is busy and the channel is not
paused, then play from disk is suspended.

SPECIAL CONSIDERATIONS

You can call the SndPauseFi | ePl ay function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

The trap macro and routine selector for the SndPauseFi | ePl ay function are

Trap macro Selector

_SoundDi spat ch $02040008

noErr 0 No error

queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable
channel Not Busy =211 Channel not currently used

SndStopFilePlay

DESCRIPTION

2-126

You can use SndSt opFi | ePl ay to stop an asynchronous play from disk.

FUNCTI ON SndSt opFi | ePl ay (chan: SndChannel Ptr;
qui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel currently processing a play from disk
initiated by a call to the SndSt ar t Fi | ePl ay function.

qui et Now A Boolean value that indicates whether the play from disk should be
stopped immediately (TRUE) or when it completes execution (FALSE).

The SndSt opFi | ePl ay function either can stop an asynchronous play from disk
immediately or can take control of the CPU until a play from disk finishes. The

SndSt opFi | ePl ay function does not return until all asynchronous file I/O calls have
completed and any internally allocated memory has been released. If async is FALSE,
then SndSt opFi | ePl ay lets the sound complete normally and returns only after the
sound has completed, all asynchronous file I/ O calls have completed, and any internal
allocated memory has been released.

For example, you might use the function to stop the playing of a sound file if the user
selects an option that turns off sound output while the file is already playing. In that
case, you would pass TRUE to qui et Now Alternatively, you might have started a sound

Sound Manager Reference

CHAPTER 2

Sound Manager

playing asynchronously so that you could perform other tasks while the sound plays.
But you might then finish those other tasks and want to convert the play from disk into a
synchronous play. By passing FALSE to qui et Now you effectively achieve that.

SPECIAL CONSIDERATIONS
Because the SndSt opFi | ePl ay function might move memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSt opFi | ePl ay function are

Trap macro Selector
_SoundDi spat ch $03080008

RESULT CODES

noErr 0 No error
badChannel -205 Channel is corrupt or unusable

Allocating and Releasing Sound Channels

If you use a high-level Sound Manager routine to play sounds, you might be able to let
the Sound Manager internally allocate a sound channel. However, to use low-level
sound commands or to take full advantage of the Sound Manager’s high-level routines,
you must allocate your own sound channels. The SndNewChannel function allows your
application to allocate a new sound channel, and the SndDi sposeChannel function
allows your application to dispose of it.

SndNewChannel

You can use the SndNewChannel function to allocate a new sound channel.

FUNCTI ON SndNewChannel (VAR chan: SndChannel Ptr; synth: |nteger;
init: Longlnt; userRoutine: ProcPtr):

CSErr,
chan A pointer to a sound channel record. You can pass a pointer whose value
is NI L to force the Sound Manager to allocate the sound channel record
internally.
synth The sound data type you intend to play on this channel. If you do not

want to specify a specific data type, pass 0 in this parameter. You might
do this if you plan to use the channel to play a single sound resource that
itself specifies the sound’s data type.

Sound Manager Reference 2-127

Jabeuel\ punos n

DESCRIPTION

2-128

CHAPTER 2

Sound Manager

init The desired initialization parameters for the channel. If you cannot
determine what types of sounds you will be playing on the channel, pass
0 in this parameter. Only sounds defined by wave-table data and
sampled-sound data currently use the i ni t options. You can use the
Gest al t function to determine if a sound feature (such as stereo output)
is supported by a particular computer.

user Routi ne
A pointer to a callback procedure that the Sound Manager executes
whenever it receives a cal | BackCnd command. If you pass NI L as the
user Rout i ne parameter, then any cal | BackCnd commands sent to this
channel are ignored.

The SndNewChannel function internally allocates memory to store a queue of sound
commands. If you pass a pointer to NI L as the chan parameter, the function also
allocates a sound channel record in your application’s heap and returns a pointer to that
record. If you do not pass a pointer to NI L as the chan parameter, then that parameter
must contain a pointer to a sound channel record.

If you pass a pointer to NI L as the chan parameter, then the amount of memory the
SndNewChannel function allocates to store the sound commands is enough to store

128 sound commands. However, if you pass a pointer to the sound channel record rather
than a pointer to NI L, the amount of memory allocated is determined by the gLengt h
field of the sound channel record. Thus, if you wish to control the size of the sound
queue, you must allocate your own sound channel record. Regardless of whether you
allocate your own sound channel record, the Sound Manager allocates memory for the
sound command queue internally.

The synt h parameter specifies the sound data type you intend to play on this channel.
You can use these constants to specify the data type:

CONST
squar eWaveSynt h =1, {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sanpl edSynt h = b; {sanpl ed- sound dat a}

In Sound Manager versions earlier than version 3.0, only one data type can be produced
at any one time. As a result, SndNewChannel may fail if you attempt to open a channel
specifying a data type other than the one currently being played.

To specify a sound output device other than the current sound output device, pass the
value kUseOpt i onal Qut put Devi ce in the synt h parameter and the signature of the
desired sound output device component in the i ni t parameter.

CONST
kUseOpt i onal Qut put Devi ce = -1;

The ability to redirect output away from the current sound output device is intended for
use by specialized applications that need to use a specific sound output device. In

Sound Manager Reference

CHAPTER 2

Sound Manager

general, your application should always send sound to the current sound output device
selected by the user.

SPECIAL CONSIDERATIONS
Because the SndNewChannel function allocates memory, you should not call it at
interrupt time.

RESULT CODES
nokErr 0 No error
resProblem 204 Problem loading the resource
badChannel -205 Channel is corrupt or unusable
SEE ALSO

For an example of a routine that uses the SndNewChannel function, see Listing 2-1 on
page 2-20.

For information on the format of a callback procedure, see “Callback Procedures” on
page 2-152.

SndDisposeChannel

If you allocate a sound channel by calling the SndNewChannel function, you must
release the memory it occupies by calling the SndDi sposeChannel function.

FUNCTI ON SndDi sposeChannel (chan: SndChannel Ptr;
qgui et Now. Bool ean): OSErr;

chan A pointer to a valid sound channel record.

qui et Now A Boolean value that indicates whether the channel should be disposed
immediately (TRUE) or after sound stops playing (FALSE).

DESCRIPTION
The SndDi sposeChannel function disposes of the queue of sound commands
associated with the sound channel specified in the chan parameter. If your application
created its own sound channel record in memory or installed a sound as a voice in a
channel, the Sound Manager does not dispose of that memory. The Sound Manager also
does not release memory associated with a sound resource that you have played on
a channel. You might use the user | nf o field of the sound channel record to store
the address of a sound handle you wish to release before disposing of the sound
channel itself.

Sound Manager Reference 2-129

Jabeuel\ punos n

CHAPTER 2

Sound Manager

The SndDi sposeChannel function can dispose of a channel immediately or wait
until the queued commands are processed. If qui et Nowis set to TRUE, a f | ushCnd
command and then a qui et Cnd command are sent to the channel bypassing

the command queue. This removes all commands, stops any sound in progress, and
closes the channel. If qui et Nowis set to FALSE, then the Sound Manager issues a
qui et Cmd command only; it does not bypass the command queue, and it waits until
the qui et Cmd command is processed before disposing of the channel.

SPECIAL CONSIDERATIONS

Because the SndDi sposeChannel function might dispose of memory, you should not
call it at interrupt time.

RESULT CODES

nokErr 0 No error
badChannel -205 Channel is corrupt or unusable

Sending Commands to a Sound Channel

Once a sound channel is opened, you can send commands to that channel by issuing
requests with the SndDoCommand and SndDol nmedi at e functions.

The section “Sound Command Numbers” beginning on page 2-92 lists the sound
commands that you can send using SndDoConmand, SndDol medi at e, or (in several
cases) SndCont r ol .

SndDoCommand

You can queue a command in a sound channel by calling the ShdDoConmand function.

FUNCTI ON SndDoCommand (chan: SndChannel Ptr; cnd: SndConmand;
noWait: Bool ean): OSErr;

chan A pointer to a valid sound channel.

cnd A sound command to be sent to the channel specified in the chan
parameter.

noVMi t A flag indicating whether the Sound Manager should wait for a free space

in a full queue (FALSE) or whether it should return immediately with a
queueFul | result code if the queue is full (TRUE).

DESCRIPTION

The SndDoConmand function sends the sound command specified in the cnd parameter
to the end of the command queue of the channel specified in the chan parameter.

2-130 Sound Manager Reference

CHAPTER 2

Sound Manager

The noWai t parameter has meaning only if a sound channel’s queue of sound
commands is full. If the noWAi t parameter is set to FALSE and the queue is full, the
Sound Manager waits until there is space to add the command, thus preventing your
application from doing other processing. If nOWi t is set to TRUE and the queue is full,
the Sound Manager does not send the command and returns the queueFul | result code.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Whether SndDoCommrand moves memory depends on the particular sound command
you're sending it. Most of the available sound commands do not cause SndDoCommand
to move memory and can therefore be issued at interrupt time. Moreover, you can
sometimes safely send commands at interrupt time that would otherwise cause memory
to move if you've previously issued the soundCnd sound command to preconfigure the
channel at noninterrupt time.

noErr 0 No error
queueFul | -203 No room in the queue
badChannel -205 Channel is corrupt or unusable

For an example of a routine that uses the SndDoConmand function, see Listing 2-15 on
page 2-42.

SndDolmmediate

DESCRIPTION

You can use the SndDol nmedi at e function to place a sound command in front of a
sound channel’s command queue.

FUNCTI ON SndDol mredi at e (chan: SndChannel Ptr; cnd: SndCommand):

CSErr;
chan A pointer to a sound channel.
cmd A sound command to be sent to the channel specified in the

chan parameter.

The SndDol nmedi at e function operates much like SndDoConmand, except that it
bypasses the existing command queue of the sound channel and sends the specified
command directly to the Sound Manager for immediate processing. This routine also
overrides any wai t Cnt, pauseCn, or syncCnd commands that might have already
been processed. However, other commands already received by the Sound Manager will

Sound Manager Reference 2-131

Jabeuel\ punos n

CHAPTER 2

Sound Manager

not be interrupted by the SndDol nmedi at e function (although a qui et Cnd command
sent via SndDol mmedi at e will quiet a sound already playing).

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

Whether SndDol medi at e moves memory depends on the particular sound command
you're sending it. Most of the available sound commands do not cause

SndDol nmedi at e to move memory and can therefore be issued at interrupt time.
Moreover, you can sometimes safely send commands at interrupt time that would
otherwise cause memory to move if you've previously issued the soundCnd sound
command to preconfigure the channel at noninterrupt time.

noErr 0 No error
badChannel -205 Channel is corrupt or unusable

For an example of a routine that uses the SndDol mredi at e function, see Listing 2-4 on
page 2-26.

Obtaining Information

2-132

To obtain information about whether a computer supports certain sound features, you
should use the Gest al t function, documented in Inside Macintosh: Operating System
Utilities. Sometimes, however, you might need information the Gest al t function is not
able to provide. The Sound Manager provides a number of routines that you can use to
obtain additional sound-related information.

You can obtain the version numbers of the Sound Manager and the MACE tools by
calling the SndSoundManager Ver si on and MACEVer si on functions, respectively. You
can obtain information about a sound channel and about all sound channels by calling
the SndCont r ol , SndChannel St at us, and SndManager St at us functions,
respectively.

The Sound Manager includes two routines—SndGet SysBeepSt at e and
SndSet SysBeepSt at e—that allow you to determine and alter the status of the
system alert sound.

To play a sound resource using low-level Sound Manager routines, you need the address
of the sound header stored in the sound resource. Sound Manager versions 3.0 and

later provide the Get SoundHeader Of f set function that you can use to obtain

that information.

Sound Manager Reference

CHAPTER 2

Sound Manager

SndSoundManager\Version

DESCRIPTION

You can use SndSoundManager Ver si on to determine the version of the Sound
Manager tools available on a computer.

FUNCTI ON SndSoundManager Ver si on: NumVer si on;

The SndSoundManager Ver si on function returns a version number that contains the
same information as in the first 4 bytes of a' ver s’ resource. You might use the
SndSoundManager Ver si on function to determine if a computer has the enhanced
Sound Manager, which is necessary for multichannel sound and for continuous plays
from disk.

SPECIAL CONSIDERATIONS

You can call the SndSoundManager Ver si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

The trap macro and routine selector for the SndSoundManager Ver si on function are

Trap macro Selector
_SoundDi spat ch $000C0008

For information on how to use the SndSoundManager Ver si on function to determine
whether the enhanced Sound Manager is available, see “Obtaining Version Information’
on page 2-34.

7

MACEVersion

DESCRIPTION

You can use MACEVer si on to determine the version of the MACE tools available on a
machine.

FUNCTI ON MACEVer si on: NunVer si on;

The MACEVer si on function returns a version number that contains the same
information as in the first 4 bytesof a' vers' resource.

Sound Manager Reference 2-133

Jabeuel\ punos n

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS
You can call the MACEVer si on function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the MACEVer si on function are

Trap macro Selector
_SoundDi spat ch $00000010

SndControl

You can obtain information about a sound data type by using the SndCont r ol function.
In Sound Manager version 3.0 and later, however, you virtually never need to call
SndCont r ol . The capabilities that SndCont r ol provides are either provided by the
Gest al t function or are no longer supported. The SndCont r ol function is
documented here for completeness only.

FUNCTI ON SndControl (id: Integer; VAR cnd: SndCommand): OSErr;

id The sound data type you want to get information about.

cnmd A sound command.

DESCRIPTION

The SndCont r ol function sends a control command directly to the Sound Manager to
get information about a specific data type. The available data types are specified by

constants:

CONST
squar eWaveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-t abl e dat a}
sanpl edSynt h = b; {sanpl ed- sound dat a}

You can call SndCont r ol even if no channel has been created for the type of data you
want to get information about. SndCont r ol can be used with the avai | abl eCnd or
ver si onCrd sound commands to request information. The requested information is
returned in the sound command record specified by the cnd parameter.

IMPORTANT

The SndCont r ol function can indicate only whether a particular data
format supports some feature (for example, stereo output), not whether
the available sound hardware also supports that feature. In general, you
should use the Gest al t function to determine whether the sound
features you need are available in the current operating environment. a

2-134 Sound Manager Reference

CHAPTER 2

Sound Manager

In Sound Manager version 2.0, you can also use the t ot al LoadCnd and | oadCnd
commands to get information about the amount of CPU time consumed by
sound-related processing. However, these commands are not very accurate and are
not supported by version 3.0 and later.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

You should not call the SndCont r ol function at interrupt time.

noErr 0 No error

See the list of sound commands in “Sound Command Numbers” beginning on page 2-92

for a complete description of the sound commands supported by SndCont r ol .

SndChannelStatus

DESCRIPTION

You can use the SndChannel St at us function to determine the status of a sound
channel.

FUNCTI ON SndChannel St atus (chan: SndChannel Ptr;
t heLengt h: I nteger;
theStatus: SCStatusPtr): OSErr;

chan A pointer to a valid sound channel.

t heLengt h The size in bytes of the sound channel status record. You should set this
field to Si zeOF (SCSt at us) .

t heStatus A pointer to a sound channel status record.

If the SndChannel St at us function executes successfully, the fields of the record
specified by t heSt at us accurately describe the sound channel specified by chan.

SPECIAL CONSIDERATIONS

You can call the SndChannel St at us function at interrupt time.

Sound Manager Reference 2-135

Jabeuel\ punos n

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndChannel St at us function are

Trap macro Selector
_SoundDi spat ch $00100008

RESULT CODES
nokErr 0 No error
parantrr -50 A parameter is incorrect
badChannel -205 Channel is corrupt or unusable
SEE ALSO

For information on the structure of a sound channel status record, see “Sound Channel
Status Records” on page 2-101.

SndManagerStatus

You can use the SndManager St at us function to determine information about all sound
channels currently allocated.

FUNCTI ON SndManager St at us (t heLengt h: I nteger;
theStatus: SMstatusPtr): OSErr;

t heLengt h The size in bytes of the Sound Manager status record. You should set this
field to Si zeOF (SMSt at us) .

theStatus A pointer to a Sound Manager status record.

DESCRIPTION

The SndManager St at us function determines information about all currently allocated
sound channels. If the ShdManager St at us function executes successfully, the fields

of the record specified by t heSt at us accurately describe the current status of the
Sound Manager.

SPECIAL CONSIDERATIONS
You can call the SndManager St at us function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndManager St at us function are

Trap macro Selector
_SoundDi spat ch $00140008

2-136 Sound Manager Reference

CHAPTER 2

Sound Manager

RESULT CODES
noErr 0 No error

SndGetSysBeepState

You can use the SndGet SysBeepSt at e procedure to determine if the system alert
sound is enabled.

PROCEDURE SndGet SysBeepSt at e (VAR sysBeepState: |nteger);

sysBeepState
On exit, the state of the system alert sound.

Jabeuel\ punos n

DESCRIPTION

The SndCet SysBeepsSt at e procedure returns one of two states in the sysBeepSt at e
parameter, either the sysBeepDi sabl e or the sysBeepEnabl e constant.

CONST
sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

SPECIAL CONSIDERATIONS
You can call the SndGet SysBeepSt at e procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndGet SysBeepSt at e procedure are

Trap macro Selector
_SoundDi spat ch $00180008

SndSetSysBeepState

You can use the SndSet SysBeepSt at e function to set the state of the system alert
sound.

FUNCTI ON SndSet SysBeepState (sysBeepState: Integer): OSErr;

sysBeepState
The desired state of the system alert sound.

Sound Manager Reference 2-137

CHAPTER 2

Sound Manager

DESCRIPTION

You can use the SndSet SysBeepSt at e function to temporarily disable the system alert
sound while you play a sound and then enable the alert sound when you are done.

The sysBeepSt at e parameter should be set to either sysBeepDi sabl e or
sysBeepEnabl e.

If your application disables the system alert sound, be sure to enable it when your
application gets a suspend event.

SPECIAL CONSIDERATIONS
You can call the SndSet SysBeepSt at e function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndSet SysBeepSt at e function are

Trap macro Selector
_SoundDi spat ch $001C0008

RESULT CODES

noErr 0 No error

par antrr -50 A parameter is incorrect
GetSoundHeaderOffset

You can use the Get SoundHeader O f set function to get the offset from the beginning
of a sound resource to the embedded sound header.

FUNCTI ON Get SoundHeader O f set (sndHdl : Handl e;
VAR of fset: Longlint): OSErr;

sndHdl A handle to a sound resource.

of f set On exit, the offset from the beginning of the sound resource specified by
the sndHdl parameter to the beginning of the sound header within that
sound resource.

DESCRIPTION

The Get SoundHeader O f set function returns, in the of f set parameter, the number
of bytes from the beginning of the sound resource specified by the sndHdl parameter to
the sound header that is contained within that resource. You might need this information
if you want to use the address of that sound header in a sound command (such as the
soundCnd or buf f er Cnd sound command).

The handle passed to Get SoundHeader O f set does not have to be locked.

2-138 Sound Manager Reference

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

The Get SoundHeader O f set function is available only in version 3.0 and later of the
Sound Manager. See “Obtaining a Pointer to a Sound Header” beginning on page 2-57

for a function you can call in earlier versions of the Sound Manager to obtain the same

information.

You can call the Get SoundHeader Of f set function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SoundHeader Of f set function are

Trap macro Selector
_SoundDi spat ch $04040024

RESULT CODES

NnoErr 0 No error
badFor mat —206 Resource is corrupt or unusable

SEE ALSO
See Listing 2-27 on page 2-57 for an example of calling Get SoundHeader O f set .

Controlling Volume Levels

You can use the Get SysBeepVol une and Set SysBeepVol une functions to get and set
the volume level of the system alert sound. You can use Get Def aul t Qut put Vol une
and Set Def aul t Qut put Vol une to get and set the default output volume for a
particular output device.

IMPORTANT
These four functions are available only in Sound Manager version 3.0
and later. a

With all of these functions, you specify a volume with a 16-bit value, where 0 represents
no volume (that is, silence) and 256 (hexadecimal $0100) represents full volume. The
right and left volumes of a stereo sound are encoded as the high word and the low word,
respectively, of a 32-bit value. Moreover, it’s possible to overdrive a particular volume
level if you need to amplify a low signal. For example, the long word $02000200 specifies
a volume level of twice full volume on both the left and right channels of a stereo sound.

In addition to the four functions described in this section, Sound Manager version 3.0
introduces two new sound commands, get Vol umeCnd and vol umeCnd, that you can
use to get and set the volume of a particular sound channel. See page 2-96 for details on
these two sound commands; see “Managing Sound Volumes” beginning on page 2-31 for
a code listing that uses the vol umeCnrd command.

Sound Manager Reference 2-139

Jabeuel\ punos n

CHAPTER 2

Sound Manager

GetSysBeepVolume

You can use the Get SysBeepVol une function to determine the current volume of the
system alert sound.

FUNCTI ON CGet SysBeepVol une (VAR | evel: Longlnt): OSErr;

I evel On exit, the current volume level of the system alert sound.

DESCRIPTION

The Get SysBeepVol une function returns, in the | evel parameter, the current volume
level of the system alert sound. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Get SysBeepVol une function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02240024

RESULT CODES
noErr 0 No error

SetSysBeepVolume

You can use the Set SysBeepVol une function to set the current volume of the system
alert sound.

FUNCTI ON Set SysBeepVol une (Il evel: Longlnt): OSErr;

I evel The desired volume level of the system alert sound.

DESCRIPTION

The Set SysBeepVol une function sets the current volume level of the system alert
sound. The values you can specify in the high and low words of the | evel parameter

2-140 Sound Manager Reference

CHAPTER 2

Sound Manager

range from 0 (silence) to $0100 (full volume). Any calls to the SysBeep procedure use
the volume set by the most recent call to Set SysBeepVol une.

SPECIAL CONSIDERATIONS
The Set SysBeepVol une function is available only in versions 3.0 and later of the
Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set SysBeepVol une function are

Trap macro Selector
_SoundDi spat ch $02280024

RESULT CODES
noErr 0 No error

GetDefaultOutputVolume

You can use the Get Def aul t Qut put Vol une function to determine the default volume
of a sound output device.

FUNCTI ON Get Def aul t Qut put Vol unme (VAR | evel : Longlnt): OSErr;

I evel On exit, the default volume level of a sound output device.

DESCRIPTION
The Get Def aul t Qut put Vol une function returns, in the | evel parameter, the default
volume of a sound output device. The values returned in the high and low words of the
| evel parameter range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS
The Get Def aul t Qut put Vol ume function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Get Def aul t Qut put Vol une function are

Trap macro Selector
_SoundDi spat ch $022C0024

Sound Manager Reference 2-141

Jabeuel\ punos n

CHAPTER 2

Sound Manager

RESULT CODES
noErr 0 No error

SetDefaultOutputVolume

You can use the Set Def aul t Qut put Vol une function to set the default volume of a
sound output device.

FUNCTI ON Set Def aul t Qut put Vol une (l evel: Longint): OSErr;

[evel The desired default volume level of a sound output device.

DESCRIPTION

The Set Def aul t Qut put Vol une function sets the default volume of a sound output
device. The values you can specify in the high and low words of the | evel parameter
range from 0 (silence) to $0100 (full volume).

SPECIAL CONSIDERATIONS

The Set Def aul t Qut put Vol une function is available only in versions 3.0 and later of
the Sound Manager. You can call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Set Def aul t Qut put Vol une function are

Trap macro Selector
_SoundDi spat ch $02300024

RESULT CODES
noErr 0 No error

Compressing and Expanding Audio Data

You can use the procedures Conp3t 01 and Conp6t 01 to compress sound data. You can
use the procedures Explt 03 and Explt 06 to expand compressed audio data.

2-142 Sound Manager Reference

CHAPTER 2

Sound Manager

Compa3tol
You can use the Conp3t 01 procedure to compress sound data at a ratio of 3:1.
PROCEDURE Comp3tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel: Longlnt);

i nBuf fer A pointer to a buffer of samples to be compressed.

out Buf f er A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

outState A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i NSt at e parameter.

nunChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to compress, when nunChannel s is greater than 1. This
parameter must be in the range of 1 to nunChannel s.

DESCRIPTION

The Conp3t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 3 bytes in size. The original samples can be monophonic or
include multiple channels of sound, but they must be in 8-bit offset binary format. Also,
if nunChannel s is greater than 1, then the noncompressed sound must be stored in
interleaved format on a sample basis.

If you compress polyphonic sound, you retain only one channel of sound, which you
specify in the whi chChannel parameter. Thus, if you use the Conp3t 01 procedure

to compress three-channel sound, you will have effectively compressed the sound to
one-ninth its original size in bytes. To retain multiple channels of sound after
compression, you must call the Conp3t 01 procedure for each channel to be compressed
and then interleave the compressed sound data on a packet basis.

The Conp3t 01 procedure compresses every 48 bytes of sound data to exactly 16 bytes of
compressed sound data and compresses remaining bytes to no more than one-third the
original size.

You can use the i nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

Sound Manager Reference 2-143

Jabeuel\ punos n

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp3t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

Compé6tol

The trap macro and routine selector for the Conp3t 01 procedure are

Trap macro Selector
_SoundDi spat ch $00040010

DESCRIPTION

2-144

You can use the Conp6t 01 procedure to compress sound data at a ratio of 6:1.

PROCEDURE Conp6tol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel : Longlnt);

i nBuf f er A pointer to a buffer of samples to be compressed.

out Buf fer A pointer to a buffer where the samples are to be written.

cnt The number of samples to compress.

i NSt at e A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i NSt at e parameter.

nunChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to compress, when nunChannel s is greater than 1. This
parameter must be in the range of 1 to nuntChannel s.

The Conp6t 01 procedure compresses cnt samples of sound stored in the buffer
specified by i nBuf f er and places the result in the buffer specified by out Buf f er,
which must be at least cnt / 6 bytes in size. The Conp6t 01 procedure works much like
the Conp3t 01 procedure, but compresses every 48 bytes of sound data to exactly 8 bytes
of compressed sound data and compresses remaining bytes to no more than one-sixth
the original size.

Sound Manager Reference

CHAPTER 2

Sound Manager

SPECIAL CONSIDERATIONS

Because the Conp6t 01 procedure might allocate and dispose of memory, you should not
call it at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Conp6t 01 procedure are

Trap macro Selector
_SoundDi spat ch $000C0010

Explto3

You can use the Exp1t 03 procedure to expand a buffer of sound samples you

previously have compressed with the Conp3t 01 procedure.

PROCEDURE Explto3 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;

inState: Ptr; outState: Ptr;
nunmChannel s: Longl nt; whi chChannel : Longlnt);

i nBuf f er A pointer to a buffer of packets to be expanded.

out Buf f er A pointer to a buffer where the expanded samples will be written.

cnt The number of packets to expand.

inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.

out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i NSt at e parameter.

nunChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.

whi chChannel
The channel to expand, when nunChannel s is greater than 1. This
parameter must be in the range of 1 to nuntChannel s.

DESCRIPTION

The Exp1t 03 procedure expands cnt packets of sound stored in the buffer specified by
i nBuf f er and places the result in the buffer specified by out Buf f er, whose size must
be at least cnt packets * 2 bytes per packet * 3, orcnt * 6 bytes. If nunChannel s is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis.

Sound Manager Reference 2-145

Jabeuel\ punos n

CHAPTER 2

Sound Manager

If you expand compressed sound data that includes multiple sound channels, you retain
only one channel of sound, which you specify in the whi chChannel parameter. Thus, if
you use the Exp1t 03 procedure to expand three-channel sound, the output buffer will
be the same size as the input buffer since only one channel is retained. To retain multiple
channels of sound after expansion, you must call the Exp1t 03 procedure for each
channel to be expanded and then interleave the expanded sound data on a sample basis.

The Explt 03 procedure expands every packet of sampled-sound data to exactly 6 bytes.

You can use the i nSt at e and out St at e parameters to allow the MACE compression
routines to preserve information about algorithms across calls. Alternatively, you may
pass NI L state buffers and let the Sound Manager allocate the buffers internally.

SPECIAL CONSIDERATIONS

Because the Explt 03 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the Exp1t 03 procedure are

Trap macro Selector
_SoundDi spat ch $00080010

Expl1to6
You can use the Explt 06 procedure to expand a buffer of sound samples you
previously have compressed with the Conp6t 01 procedure.
PROCEDURE Explto6 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nuntChannel s: Longl nt; whi chChannel : Longlnt);
i nBuf f er A pointer to a buffer of packets to be expanded.
out Buf fer A pointer to a buffer where the expanded samples will be written.
cnt The number of packets to expand.
inState A pointer to a 128-byte buffer from which the input state of the algorithm
is read, or NI L. To initialize the algorithm, this buffer should be filled
with zeros.
out State A pointer to a 128-byte buffer to which the output state of the algorithm is
written, or NI L. This buffer might be the same as that specified by the
i NSt at e parameter.
nunChannel s
The number of channels in the buffer pointed to by the i nBuf f er
parameter.
2-146 Sound Manager Reference

CHAPTER 2

Sound Manager

whi chChannel
The channel to expand, when nuntChannel s is greater than 1. This
parameter must be in the range of 1 to nunChannel s.

DESCRIPTION

The Explt 06 procedure expands cnt packets of sound stored in the buffer specified by
i nBuf f er and places the result in the buffer specified by out Buf f er, whose size must
be at least cnt packets * 1 byte per packet *6, orcnt * 6 bytes. If nunChannel s is
greater than 1, then the compressed sound must be stored in interleaved format on a
packet basis. The Exp1t 06 procedure works just like the Exp1t 03 procedure, but
expands 1-byte packets rather than 2-byte packets.

SPECIAL CONSIDERATIONS
Because the Expl1t 06 procedure might allocate memory, you should not call it at
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the Exp1t 06 procedure are

Trap macro Selector
_SoundDi spat ch $00100010

Managing Double Buffers

If you wish to customize the double buffering algorithm that the Sound Manager uses to
manage a play from disk, you can use the SndPI ayDoubl eBuf f er function. The Sound
Manager’s high-level play-from-disk routines make extensive use of this function.

SndPlayDoubleBuffer

The SndPl ayDoubl eBuf f er function is a low-level routine that gives you maximum
efficiency and control over double buffering while still maintaining compatibility with
the Sound Manager.

FUNCTI ON SndPI ayDoubl eBuf fer (chan: SndChannel Ptr;
t hePar ans: SndDoubl eBuf f er HeaderPtr): OSErr;

chan A pointer to a valid sound channel.

t heParams A pointer to a sound double buffer header record.

Sound Manager Reference 2-147

Jabeuel\ punos n

CHAPTER 2

Sound Manager

DESCRIPTION
The SndPl ayDoubl eBuf f er function launches a low-level sound play using the
information in the double buffer header record specified by t hePar ans. After your
application calls this function, the Sound Manager repeatedly calls the doubleback
procedure you specify in the double buffer header record. The doubleback procedure
then manages the filling of buffers of sound data from disk whenever one of the two
buffers specified in the double buffer header record becomes exhausted.

SPECIAL CONSIDERATIONS
Because the SndPl ayDoubl eBuf f er function might move memory, you should not call
it at interrupt time.

You can use the SndPI ayDoubl eBuf f er function only on a Macintosh computer that
supports the play-from-disk routines. For information on how to determine whether a
computer supports these routines, see “Testing for Multichannel Sound and
Play-From-Disk Capabilities” on page 2-35.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the SndPl ayDoubl eBuf f er function are

Trap macro Selector
_SoundDi spat ch $00200008

RESULT CODES

noErr 0 No error
badChannel -205 Channel is corrupt or unusable

SEE ALSO

7

For information on the format of a doubleback procedure, see “Doubleback Procedures”
on page 2-153.

Performing Unsigned Fixed-Point Arithmetic

This section describes the Unsi gnedFi xMul Di v function provided by the Sound
Manager that you can use to perform multiplication and division on unsigned
fixed-point numbers.

2-148 Sound Manager Reference

CHAPTER 2

Sound Manager

UnsignedFixMulDiv

DESCRIPTION

You can use the Unsi gnedFi xMul Di v function to perform multiplications and
divisions on unsigned fixed-point numbers. You'll typically use it to calculate
sample rates.

FUNCTI ON Unsi gnedFi xMul Di v (val ue: Unsi gnedFi xed;
nmul tiplier: UnsignedFixed;
di vi sor: Unsi gnedFi xed) :
Unsi gnedFi xed,;

val ue The value to be multiplied and divided.

mul tiplier
The multiplier to be applied to the value in the val ue parameter.

di vi sor The divisor to be applied to the value in the val ue parameter.

The Unsi gnedFi xMul Di v function returns the fixed-point number that is the value of
the val ue parameter, multiplied by the value in the mul ti pl i er parameter and
divided by the value in the di vi sor parameter. Note that Unsi gnedFi xMul Di v
performs both operations before returning. If you want to perform only a multiplication
or only a division, pass the value $00010000 for whichever parameter you want to
ignore. For example, to determine the sample rate that is twice that of the 22 kHz rate,
you can use Unsi gnedFi xMul Di v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e22kHz, $00020000, $00010000);

Similarly, to determine the sample rate that is half that of the 44 kHz rate, you can use
Unsi gnedFi xMul Di v as follows:

nyNewRat e : = Unsi gnedFi xMul Di v(rat e44kHz, $00010000, $00020000);

SPECIAL CONSIDERATIONS

The Unsi gnedFi xMul Di v function is available only in versions 3.0 and later of the
Sound Manager.

Linking Modifiers to Sound Channels

Early versions of the Sound Manager allowed application developers to use modifiers
to alter sound commands before being processed by the Sound Manager. The Sound
Manager no longer supports this capability. SndAddModi f i er is documented here for
completeness only.

Sound Manager Reference 2-149

Jabeuel\ punos n

CHAPTER 2

Sound Manager

SndAddModifier

DESCRIPTION

The Sound Manager previously used the SndAddModi f i er function to link modifiers to
sound channels.

FUNCTI ON SndAddMbdi fi er (chan: SndChannel Ptr; nodifier: ProcPtr;
id: Integer; init: Longlnt): OSErr;

chan A pointer to a valid sound channel.

modi fi er A pointer to a modifier function to be added to the sound channel
specified by chan. This field is obsolete.

id The resource ID of the modifier to be linked to the sound channel.

init The initialization parameters for the sound channel specified by chan.

The SndAddModi fi er function installs a modifier into an open channel specified in the
chan parameter. The nodi fi er parameter should be NI L, and the i d parameter is the
resource ID of the modifier to be linked to the sound channel. SndAddMbdi fi er causes
the Sound Manager to load the specified ' snt h' resource, lock it in memory, and link it
to the channel specified.

IMPORTANT
The SndAddModi fi er function is for internal Sound Manager use only.
You should not call it in your application. a

The only supported use of the SndAddModi f i er function is to change the data

type associated with a sound channel. For example, you can pass the constant

sanpl edSynt h in the i d parameter to reconfigure a sound channel for sampled-sound
data. You should, however, set a sound channel’s data type when you call
SndNewChannel , not by calling SndAddMbdi fi er.

SPECIAL CONSIDERATIONS

RESULT CODES

SEE ALSO

2-150

You should not use the SndAddModi fi er function.

noErr 0 No error
resProblem 204 Problem loading the resource
badChannel —205 Channel is corrupt or unusable

To modify sampled-sound data immediately before the Sound Manager plays it, you can
customize double buffering routines so that your application can modify sampled-sound

Sound Manager Reference

CHAPTER 2

Sound Manager

data when it fills a buffer of sound data for the Sound Manager to play. For more
information, see “Using Double Buffers” on page 2-68.

To change the initialization options for a sound channel, you can use the r el ni t Cnd
command. For a description of that command, see “Sound Command Numbers”
beginning on page 2-92.

Application-Defined Routines

The Sound Manager allows you to define a completion routine that execute when a
play from disk finishes executing, a callback procedure that executes whenever your
application issues the cal | BackCrd command, and a doubleback procedure that
you must define if you wish to customize the double buffering of data during a play
from disk.

Completion Routines

You can specify a completion routine as the seventh parameter to the
SndSt art Fi | ePl ay function. The completion routine executes when the sound file
finishes playing (unless sound play was stopped by the SndSt opFi | ePl ay function).

MyCompletionRoutine

DESCRIPTION

A Sound Manager completion routine has the following syntax:
PROCEDURE MyFi | ePl ayConpl eti onRouti ne (chan: SndChannel Ptr);

chan A pointer to the sound channel on which a play from disk has completed.

The Sound Manager executes your completion routine when a play from disk on the
channel specified by the chan parameter finishes. You might use the completion routine
to set a global flag that alerts the application that it must dispose of the sound channel.

SPECIAL CONSIDERATIONS

A completion routine is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your completion routine needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by
the chan parameter to pass that value to your completion routine.)

Sound Manager Reference 2-151

Jabeuel\ punos n

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

Because this routine is called at interrupt time, it must preserve all registers other than
A0-A1 and D0-D2.

SEE ALSO
For information on how you can use completion routines to help manage an
asynchronous play from disk, see “Managing an Asynchronous Play From Disk” on
page 2-52.

Callback Procedures

You can specify a callback procedure as the fourth parameter to the SndNewChannel
function. The callback procedure executes whenever the Sound Manager processes a
cal | BackOnd command for the channel.

MyCallbackProcedure

A callback procedure has the following syntax:

PROCEDURE MyCal | backProcedure (theChan: SndChannel Ptr;
t heCnd: SndCommand) ;

t heChan A pointer to the sound channel on which a cal | BackCnd command
was issued.

t heCmd The sound command record in which a cal | BackCnd command was
issued.

DESCRIPTION
The Sound Manager executes the callback procedure associated with a sound channel
whenever it processes a cal | BackCnd command for the channel. You can use a callback
procedure to set a global flag that alerts the application that it must dispose of the sound
channel. Or, you can use a callback procedure so that your application can synchronize a
series of sound commands with other actions.

SPECIAL CONSIDERATIONS
A callback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use the user | nf o field of the sound channel pointed to by
the t heChan parameter or the par an® field of the sound command specified in the
t heCnd parameter to pass that value to your callback procedure.)

2-152 Sound Manager Reference

CHAPTER 2

Sound Manager

ASSEMBLY-LANGUAGE INFORMATION

SEE ALSO

Because a callback procedure is called at interrupt time, it must preserve all registers
other than A0-A1 and D0-D2.

For information on how you can use callback procedures when playing sound
asynchronously, see “Using Callback Procedures” on page 2-47.

Doubleback Procedures

If you wish to customize the double buffering of sound during a play from disk, you
must use the SndPl ayDoubl eBuf f er function and define a doubleback procedure.
Doubleback procedures also give you the power to modify sampled-sound data
immediately before the Sound Manager plays it.

MyDoubleBackProc

DESCRIPTION

A doubleback procedure has the following syntax:

PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
exhaust edBuf f er: SndDoubl eBufferPtr);

chan A pointer to a sound channel on which a play from disk is executing.

exhaust edBuf f er
A pointer to a sound double buffer record

The Sound Manager calls the doubleback procedure associated with a play from disk
whenever the Sound Manager has exhausted the buffer. As the doubleback procedure
refills the buffer, the Sound Manager plays the other buffer. Your application might also
call the doubleback procedure twice to fill both buffers before the initial call to

SndPI ayDoubl eBuf f er function.

When your doubleback procedure is called, it must

» fill the buffer specified in the exhaust edBuf f er parameter with the next set of
sound frames that the Sound Manager must play

s set the dbNunFr anes field of the sound double buffer record to the number of frames
in the buffer

= set the dbBuf f er Ready bit of the dbFI ags field of the sound double buffer record

If your doubleback procedure fills the buffer with the last frames of sound that need to
be played, then your procedure should set the dbLast Buf f er bit of the dbFl ags field
of the sound double buffer record.

Sound Manager Reference 2-153

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Your doubleback procedure might fill the buffer with data from any of several sources.
For example, the doubleback procedure might compute the data, copy it from elsewhere
in RAM, or read it from disk. A doubleback procedure can also read data from disk and
then modify the data. This might be useful, for example, if you would like the Sound
Manager to be able to play sampled-sound data stored in 16-bit binary offset format.
Your doubleback procedure could translate the data to the 8-bit binary offset format that
the Sound Manager can read before placing it in the buffer.

SPECIAL CONSIDERATIONS

A doubleback procedure is called at interrupt time. It must not make any calls to the
Memory Manager, either directly or indirectly. If your callback procedure needs to access
your application’s global variables, you must ensure that register A5 contains your
application’s A5. (You can use one of the two long integers in the dbUser | nf o field of
the sound double buffer record specified by the exhaust edBuf f er parameter to pass
that value to your callback procedure.)

ASSEMBLY-LANGUAGE INFORMATION

Because a doubleback procedure is called at interrupt time, it must preserve all registers
other than A0-A1 and D0-D2.

SEE ALSO

For an example of how you might use doubleback procedures, see “Using Double
Buffers” on page 2-68.

Resources

This section describes the structure of format 1 and format 2 sound resources. For a more
complete discussion of the structure of sound resources, see “Sound Resources” on
page 2-74.

The Sound Resource

You can store sound commands and sound data as a resource with the resource type
"snd ' . Resource IDs from 0 to 8191 are reserved by Apple Computer, Inc. You may use
all other resource IDs for your ' snd ' resources.

You can use the Get Resour ce function to search all open resource files for the first
"snd ' resource type with the given ID. The' snd ' resource type defines a sound
resource. Figure 2-8 shows the structure of a sound resource.

2-154 Sound Manager Reference

CHAPTER 2

Sound Manager

Figure 2-8 The ' snd ' resource type
"snd ' resource type Bytes
} Sound resource header } Variable
Number of sound commands 2

First sound command / 8

/

NN TN TN

Last sound command /8
Optional Sampled-sound data Variable
or wave-table data

Often, you can create a sound resource simply by using the SndRecor d function,
documented in the chapter “Introduction to Sound on the Macintosh” in this book.
However, you can also define a sound resource manually. This is especially useful for
sound resources that are simply series of sound commands and contain no
sampled-sound data. Also, you might construct a sound resource that contains
wave-table data manually. A sound resource contains the following elements:

= Sound resource header. The gives information about the format of a sound resource,
as explained below.

s Number of sound commands. Following the sound resource header is a word
indicating the number of sound commands contained in the resource.

» Sound commands. Each sound command is 8 bytes, which includes 2 bytes that
identify the command, 2 bytes for the command’s first parameter, and 4 bytes for the
command’s second parameter. When a sound command contained inan"' snd
resource has associated sound data, the high bit (defined by the dat aCf f set Fl ag
constant) should be set. This tells the Sound Manager that the value in the second
parameter is an offset from the beginning of the resource and not a pointer to a
memory location.

resource, this field might contain wave-table data

= Sound data. For a format1' snd
or a sampled sound header that includes sampled-sound data. For a format 2" snd
resource, this field should contain a sampled sound header that includes
sampled-sound data.

The format of the sound resource header differs depending on whether the ' snd
resource is format 1 or format 2. Figure 2-9 illustrates the formats of the two types of

Sound Manager Reference 2-155

Jabeuel\ punos n

CHAPTER 2

Sound Manager

sound resource header. Both sound headers begin with a format field, which defines the
format of the sound resource as either $0001 or $0002.

Figure 2-9 The sound resource header

2-156

snd ' resource header

0001

Number of data formats

First data format ID

Init option for channel

Sound resource header el

snd ' resource header

0002

Reference count

s Format 1 sound resource header. For format1' snd ' resources, the sound resource
header includes a word that indicates the number of data types to be sent to the sound
channel. Because a sound channel cannot play more than one type of sound data, you
should typically specify either $00 or $01 in this field. If you specify $01 or more, then
the sound resource header contains both a word specifying the data type and a long
word specifying the initialization options for each data type.

s Format 2 sound resource header. For format2' snd ' resources, the sound resource
header next includes a single word that the Sound Manager ignores. This word is
known as the reference count field. Your application can use this field as it pleases.

Sound Manager Reference

CHAPTER 2

Sound Manager

Summary of the Sound Manager

Pascal Summary

Constants

CONST

{Gestalt sound attributes selector and response bits}

gestal t SoundAt tr

gestal t StereoCapability
gestal t St er eoM xi ng

gest al t Soundl Ovgr Pr esent
gestal t Bui | t I nSoundl nput
gest al t HasSoundl nput Devi ce
gest al t Pl ayAndRecor d
gestal t 16Bi t Soundl O

gest al t St er eol nput
gestal tLi neLevel | nput

gest al t SndPl ayDoubl eBuf f er
gestal t Mul ti Channel s

gest al t 16Bi t Audi oSupport

{channel initialization paramneters}

i ni tChanLeft

i ni t ChanRi ght
wavel ni t Channel 0
wavel ni t Channel 1
wavel ni t Channel2
wavel ni t Channel 3
ni t Mono
nitStereo

ni t MACE3

ni t MACE6

ni t Nol nterp

[
[
[
[
[
i ni t NoDrop

"snd '
0;

P PP O0~NO O P~ WER
N B O e . :

$0002;
$0003;
$0004;

= $0005;

$0006;
$0007;
$0080;
$00C0;

= $0300;

$0400;

= $0004;

$0008;

Summary of the Sound Manager

;{sound attributes sel ector}

{built-in hw can play stereo sounds}
{built-in hw m xes stereo to nono}
{sound i nput routines avail abl e}
{built-in input hw avail abl e}

{sound i nput device avail abl e}
{built-in hw can play while recording}
{built-in hw can handl e 16-bit data}
{built-in hw can record stereo sounds}
{built-in input hw needs line |evel}
{play fromdisk routines avail abl e}
{mul tiple channel s of sound supported}
{16-bit audi o data support ed}

{left stereo channel}
{right stereo channel}
{wave-tabl e channel 0}
{wave-tabl e channel 1}
{wave-tabl e channel 2}
{wave-tabl e channel 3}

{ monophoni ¢ channel }
{stereo channel}

{3:1 conpression}

{6:1 conpression}

{no linear interpolation}
{no drop-sanpl e conversion}

2-157

Jabeuel\ punos n

CHAPTER 2

Sound Manager

{masks for channel attributes}

i ni t PanMask = $0003; {mask for right/left pan val ues}
i ni t SRat eMask = $0030; {mask for sanple rate val ues}

i nitStereoMask = $00C0; {mask for nono/stereo val ues}

i ni t CompMask = $FFOO0; {mask for conpression |Ds}

{sound data types}

squar e\aveSynt h = 1; {squar e-wave dat a}
waveTabl eSynt h = 3; {wave-tabl e dat a}
sanmpl edSynt h = b; {sanpl ed- sound dat a}

{sound conmand nunber s}

nul | Cnd = 0; {do not hi ng}
qui et Cd = 3; {stop a sound that is playing}
flushCnd = 4; {flush a sound channel }
relnitCmd = b; {reinitialize a sound channel}
wai t Cd = 10; {suspend processing in a channel}
pauseCrd = 11; {pause processing in a channel}
resumeCmd = 12; {resunme processing in a channel}
cal | BackCnd = 13; {execute a cal |l back procedure}
syncCnd = 14; {synchroni ze channel s}
avai | abl eCnd = 24; {see if initialization options }

{ are supported}
ver si onCnd = 25; {determ ne version}
t ot al LoadCnd = 26; {report total CPU | oad}
| oadCnd = 27, {report CPU | oad for a new channel}
freqbDurati onCrd = 40; {play a note for a duration}
rest Cnd = 41; {rest a channel for a duration}
freqCnd = 42, {change the pitch of a sound
anpCnd = 43; {change the anplitude of a sound}
ti nmbr eCnd = 44; {change the tinbre of a sound}
get AmpCnd = 45; {get the anplitude of a sound}
vol umreCmd = 46; {set vol une}
get Vol uneCnd = 47; {get vol une}
waveTabl eCnd = 60; {install a wave table as a voice}
soundCnd = 80; {install a sanpled sound as a voice}
buf f er Cnd = 81; {play a sanpl ed sound}
rat eCnd = 82; {set the pitch of a sanpled sound}
get Rat eCnd = 85; {get the pitch of a sanpl ed sound}

{sampl ed sound header encodi ng opti ons}

st dSH = $00; {standard sound header}
ext SH = $FF; {ext ended sound header}
cnpSH = $FE; {conpressed sound header}

2-158 Summary of the Sound Manager

CHAPTER 2

Sound Manager

{size of data structures}
stdQ.engt h = 128; {default size of standard sound }
{ channel}

{sound resource fornats}

first SoundFor mat = $0001; {format 1 'snd ' resource}
secondSoundFor nmat = $0002; {format 2 '"snd ' resource}
{sound conmand mask}

dat aOr f set Fl ag = $8000; {sound command data offset bit}
{system beep st at es}

sysBeepDi sabl e = $0000; {system al ert sound di sabl ed}
sysBeepEnabl e = $0001; {system al ert sound enabl ed}

{val ues for the unitType field in Audi oSel ecti on}
uni t TypeSeconds $0000; {seconds}
uni t TypeNoSel ecti on $FFFF; {no sel ection}

{doubl e buffer status flags}
dbBuf f er Ready $00000001; {doubl e buffer is filled}
dbLast Buf f er $00000004; {| ast doubl e buffer to play}

{values for the conpressionlD field of CrpSoundHeader}

vari abl eConpr essi on = -2; {variabl e-rati o conpression}
fi xedConpr essi on = -1; {fixed-ratio conpression}
not Conpr essed = 0; {nonconpressed sanpl es}

t hreeToOne = 3; {3:1 conpressed sanpl es}

si xToOne = 4, {6:1 conmpressed sanpl es}

{val ues for the packetSize field of CnpSoundHeader}
si xToOnePacket Si ze = 8; {packet size in bits for 6:1}
t hr eeToOnePacket Si ze 16; {packet size in bits for 3:1}

{conpressi on nanmes and types}

NoneName = 'not conpressed';
ACE2t o1Nane = "ACE 2-to-1';
ACES8t o3Nane = "ACE 8-to0-3';
MACE3t o1Narme = "MACE 3-to-1';
MACE6t o1Nane = "MACE 6-to-1';
NoneType = ' NONE' ;

ACE2Type = "ACE2',

ACE8Type = ' ACES';

MACE3Type = "' MAC3';

MACE6Type = ' MAC6'

Summary of the Sound Manager

2-159

Jabeuel\ punos n

CHAPTER 2

Sound Manager

{IDs for AIFF and AIFF-C fil es}
Al FFI D = "AFF; {AIFF file}
Al FCI D = "AFC; {AIFF-C fil e}

{IDs for AIFF and AIFF-C fil e chunks}

Form D = 'FORM ; {1D for Form Chunk}

For mat Ver si onl D = 'FVER ; {1D for Format Version Chunk}
Commonl D = ' COW ; {ID for Conmon Chunk}
SoundDat al D = ' SSND ; {1D for Sound Data Chunk}
Mar ker | D = ' MARK' ; {1D for Marker Chunk}
Instrument| D = "I NST"; {ID for Instrunent Chunk}
M Dl Dat al D ='MD"; {ID for MDI Data Chunk}
Audi oRecor di ngl D = ' AESD ; {1D for Recording Chunk}
ApplicationSpecificlD = "APPL'; {ID for Application Chunk}
Comment | D = ' COMI" ; {1D for Comment Chunk}
Nanel D = " NAME' ; {1D for Name Chunk}

Aut hor I D = "AUTH ; {ID for Author Chunk}
CopyrightI D ='(c) '; {1D for Copyright Chunk}
Annot ati onl D = " ANNO ; {1D for Annotation Chunk}

{version of AIFC format specification}
Al FCVer si onl = $A2805140; {dat e of version creation}

{MDI note value for mddle C
kM ddl eC = 60;

{ratio between frequencies of MD note val ues}
t wel f t hRoot Two = 1. 05946309434,

{standard sanpling rates}

rat e44khz = $AC440000; {44100. 00000 in fixed-point}
rat e22khz = $56EE8BAS3; {22254. 54545 in fixed-point}
rat e22050hz = $56220000; {22050. 00000 i n fixed-point}
ratellkhz = $2B7745D1; {11127. 27273 in fixed-point}

rat el1025hz

$2B110000; {11025. 00000 in fixed-point}

{constant for synth paraneter of SndNewChannel}

kUseOpt i onal Qut put Devi ce = -1;
{vol urmes}

kFul | Vol une = $0100;
kNoVol une = 0;

2-160 Summary of the Sound Manager

CHAPTER 2

Sound Manager

{devel opnent st ages}

devel opSt age = $20; {preal pha rel ease}
al phaSt age = $40; {al pha rel ease}
bet aSt age = $60; {beta rel ease}
final St age = $80; {final rel ease}
{sizes of data buffers}
st at eBl ockSi ze = 64; {size of state block buffer} o
| ef t Over Bl ockSi ze = 32; {size of leftover block buffer}
W
2
Data Types 2
<
QD
3
Unsigned Fixed-Point Numbers D
TYPE
Unsi gnedFi xed = Longl nt; {unsi gned fi xed-poi nt nunber}
Times
TYPE
Time = Longlnt; {in half-mlliseconds}
Sound Command Record
SndCommand =
PACKED RECORD
cnd: I nt eger; {command nunber}
par aml: I nt eger; {first paraneter}
par ang: Longl nt; {second paraneter}
END;
Audio Selection Record
Audi oSel ection =
PACKED RECORD
uni t Type: Longl nt; {type of tinme unit}
sel Start: Fi xed; {starting point of selection}
sel End: Fi xed; {endi ng point of selection}

END;
Audi oSel ecti onPtr = ~Audi oSel ecti on

Summary of the Sound Manager 2-161

CHAPTER 2

Sound Manager

Sound Channel Status Record

SCStatus =

RECORD
scStart Ti nme: Fi xed
scEndTi ne: Fi xed
scCurrent Ti me: Fi xed
scChannel Busy: Bool ean
scChannel Di sposed: Bool ean
scChannel Paused: Bool ean
scUnused: Bool ean
scChannel Attri butes: Longlnt;
scCPULoad: Longl nt ;

END;

SCSt at usPtr = "NSCSt at us;

Sound Manager Status Record

SMst at us =

PACKED RECORD
smvaxCPULoad: I nt eger;
smNuntChannel s: I nt eger;
snCur CPULoad: I nt eger

END;

SMBt at usPtr = ~SNBt at us;

Sound Channel Record

SndChannel =

PACKED RECORD
next Chan: SndChannel Pt r
firstMd: Ptr;
cal | Back: ProcPtr
user | nf o: Longl nt ;
wait: Longl nt;
cmdl nPr ogr ess: SndCommand,;
flags: I nt eger;
gLengt h: I nt eger;
gHead: I nt eger;
gTail : I nt eger;
queue:

END;

SndChannel Pt r = ~SndChannel

2-162 Summary of the Sound Manager

{starting time for play from di sk}
{ending tinme for play from di sk}
{current time for play from disk}
{TRUE if channel is processing cnds}
{reserved}

{TRUE if play fromdisk is paused}
{unused}

{attributes of this channel}

{CPU |l oad for this channel}

{maxi num | oad on all channel s}
{nunber of allocated channel s}
{current | oad on all channel s}

{pointer to next channel}

{used internally}

{pointer to callback procedure}
{free for application's use}
{used internally}

{used internally}

{used internally}

{used internally}

{used internally}

{used internally}

ARRAY[0. . stdQLengt h-1] OF SndConmmand;

CHAPTER 2

Sound Manager

Sound Header Record

SoundHeader =

PACKED RECORD
sampl ePtr: Ptr;
| engt h: Longl nt;
sanpl eRat e: Fi xed
| oopStart: Longl nt;
| oopENd: Longl nt;
encode: Byt e;
baseFr equency: Byt e;
sanpl eAr ea

END;

SoundHeader Ptr = ~SoundHeader

Extended Sound Header Record

Ext SoundHeader =
PACKED RECORD

sampl ePtr: Ptr;
nunthannel s: Longl nt;
sanpl eRat e: Fi xed

| oopStart: Longl nt ;
| oopEnd: Longl nt ;
encode: Byt e;
baseFr equency: Byt e;
nunfFr anes: Longl nt ;
Al FFSanpl eRat e: Ext ended80;
mar ker Chunk: Ptr;

i nstrunent Chunks: Ptr
AESRecor di ng: Ptr;
sanmpl eSi ze: I nt eger;
futureUsel: I nt eger;
futureUse2: Longl nt;
futureUse3: Longl nt ;
futureUse4: Longl nt;
sanpl eAr ea

END;

Ext SoundHeader Pt r = ~“Ext SoundHeader

Summary of the Sound Manager

PACKED ARRAY] 0.

{if NIL, sanmples in sanpl eArea}
{nunber of sanples in array}
{sampl e rate}

{1l oop poi nt begi nni ng}

{l oop poi nt endi ng}

{sampl e' s encodi ng opti on}
{base frequency of sanple}

. 0] OF Byte;

{if NIL, sanples in sanpl eArea}
{nunber of channels in sanpl e}
{rate of original sanple}

{l oop poi nt begi nni ng}

{l oop point endi ng}

{sanpl e's encodi ng option}
{base frequency of sanple}
{total nunber of franes}

{rate of original sanple}
{reserved}

{pointer to instrunment info}
{pointer to audio info}
{nunber of bits per sanpl e}
{reserved}

{reserved}

{reserved}

{reserved}

PACKED ARRAY[0..0] OF Byte;

2-163

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Compressed Sound Header Record

CnpSoundHeader =

PACKED RECORD
sampl ePtr: Ptr; {if NIL, sanples in sanpl eArea}
nunthannel s: Longl nt; {nunber of channels in sanpl e}
sanpl eRat e: Fi xed; {rate of original sanple}
| oopStart: Longl nt; {1l oop poi nt begi nni ng}
| oopENd: Longl nt; {l oop poi nt endi ng}
encode: Byt e; {sampl e' s encodi ng opti on}
baseFr equency: Byt e; {base freq. of original sanple}
nunfr anes: Longl nt; {length of sanmple in franes}
Al FFSanpl eRat e: Ext ended80; {rate of original sanple}
mar ker Chunk: Ptr; {reserved}
format: CSType; {data format type}
futureUse2: Longl nt ; {reserved}
stateVars: Stat eBl ockPtr; {pointer to StateBl ock}

| ef t Over Sanpl es: Left Over Bl ockPtr
{pointer to LeftOverBl ock}

conpr essi onl D I nt eger; {ID of conpression algorithnt
packet Si ze: I nt eger; {nunber of bits per packet}
snt hl D: I nt eger; {unused}
sanpl eSi ze: I nt eger; {bits in each sanple point}
sanpl eAr ea: PACKED ARRAY[0..0] OF Byte

END;

CnpSoundHeader Pt r = ~“CnpSoundHeader

Sound Double Buffer Header Record

SndDoubl eBuf f er Header =
PACKED RECORD

dbhNunChannel s: I nt eger; {nunber of sound channel s}
dbhSanpl eSi ze: I nt eger; {sanpl e size, if nonconpressed}
dbhConpr essi onl D: | nteger; {1 D of conpression al gorithn}
dbhPacket Si ze: I nt eger; {nunber of bits per packet}
dbhSanpl eRat e: Fi xed; {sanpl e rate}
dbhBuf ferptr: ARRAY[0. . 1] OF SndDoubl eBufferpPtr

{pointers to SndDoubl eBuf fer}
dbhDoubl eBack: ProcPtr; {poi nter to doubl eback procedure}

END;

SndDoubl eBuf f er Header Ptr = ~SndDoubl eBuf f er Header

2-164 Summary of the Sound Manager

CHAPTER 2

Sound Manager

SndDoubl eBuf f er Header 2 =

PACKED RECORD
dbhNuntChannel s: I nt eger;
dbhSanpl eSi ze: I nt eger;
dbhConpressi onl D. | nteger;
dbhPacket Si ze: I nt eger;
dbhSanpl eRat e: Fi xed;
dbhBufferPtr:

dbhDoubl eBack: ProchPtr;
dbhFor mat : CSType;
END;

{nunber of sound channel s}
{sanpl e size, if nonconpressed}
{1 D of conpression algorithn
{nunber of bits per packet}
{sanpl e rate}

ARRAY[0. .1] OF SndDoubl eBufferPtr;

{pointers to SndDoubl eBuf f er}
{poi nter to doubl eback procedure}
{signature of codec}

SndDoubl eBuf f er Header Pt r 2 = ~SndDoubl eBuf f er Header 2;

Sound Double Buffer Record

SndDoubl eBuf fer =
PACKED RECORD

dbNuntr anes: Longl nt;
dbFl ags: Longl nt;
dbUser | nf o:

dbSoundDat a:

END;

{nunmber of franes in buffer}
{buffer status flags}

ARRAY[0. .1] OF Longlnt;

{for application's use}

PACKED ARRAY[0..0] OF Byte;

{array of data}

SndDoubl eBuf fer Ptr = ~SndDoubl eBuf f er;

Chunk Header

ID = Longlnt;
ChunkHeader =
RECORD
ckl D: | O
ckSi ze: Longl nt ;
END;

Summary of the Sound Manager

{chunk 1D type}

{chunk type |D}
{nunmber of bytes of data}

2-165

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Form Chunk

Cont ai ner Chunk =
RECORD

ckl D

ckSi ze:

f or mlype:
END;

Format Version Chunk

For mat Ver si onChunk =
RECORD

ckl D

ckSi ze:

ti mest anp:
END;

Common Chunk

CommonChunk =

RECORD
ckl D
ckSi ze:
nunthannel s:
nunSanpl eFr anes:
sanpl eSi ze:
sanpl eRat e:

END;

Extended Common Chunk

Ext CommonChunk =
RECORD
ckl D
ckSi ze:
nunthannel s:
nunSanpl eFr anes:
sanpl eSi ze:
sanpl eRat e:
conpr essi onType:
conpr essi onNane:

END;

2-166 Summary of the Sound Manager

| D;
Longl nt;
I O

I O
Longl nt ;
Longl nt;

I D,

Longl nt ;
I nt eger;
Longl nt;
| nt eger;
Ext ended;

| D,

Longl nt;
I nt eger;
Longl nt;
I nt eger;
Ext ended;
| D,

{' FORM }
{nunber of bytes of data}
{type of file}

{' FVER }
{4 bytes}
{date of format version}

{" COWM }

{18 byt es}

{number of channel s}

{nunber of sanple franes}
{nunber of bits per sanpl e}
{nunber of franes per second}

{" COW }

{22 bytes + conpression nane}
{nunber of channel s}

{nunber of sanple franes}
{nunber of bits per sanpl e}
{nunber of franes per second}
{conmpression type |D}

PACKED ARRAY[0..0] OF Byte;

{conpressi on type nane}

CHAPTER 2

Sound Manager

Sound Data Chunk

SoundDat aChunk =

RECORD

ckl D | D {' SSND }

ckSi ze: Longl nt; {size of chunk data}

of f set: Longl nt ; {of fset to sound data}

bl ockSi ze: Longlnt; {size of alignnent blocks}
END;

Version Record

NunmVer si on =
PACKED RECORD
CASE | NTEGER OF

0:
(maj or Rev: Si gnedByt e; {maj or revision |level in BCD}
m nor AndBugRev: Si gnedByt e; {m nor revision |evel}
st age: Si gnedByt e; {devel opnent stage}
nonRel Rev: Si gnedByt e) ; {nonrel eased revision |evel}
1:
(version: Longlnt); {all 4 fields together}
END;

Leftover Block

Left Over Bl ock =

RECORD

count: Longl nt;

sanpl eAr ea: PACKED ARRAY[0. .l eft Over Bl ockSi ze - 1] OF Byte;
END;

Left Over Bl ockPtr = ~Left Over Bl ock;

State Block

St at eBl ock =
RECORD
stateVar: ARRAY[0. . st at eBl ockSi ze - 1] OF Integer;
END;
St at eBl ockPtr = ~St at eBl ock;

Summary of the Sound Manager

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Sound Manager Routines

Playing Sound Resources

PROCEDURE SysBeep (duration: |nteger);
FUNCTI ON SndPI ay (chan: SndChannel Ptr; sndHdl: Handl e;
async: Bool ean): OCSErr;
Playing From Disk
FUNCTI ON SndStart Fil ePl ay (chan: SndChannel Ptr; fRef Num | nteger;
resNum |Integer; bufferSize: Longlnt;
theBuffer: Ptr;
t heSel ection: Audi oSel ectionPtr;
t heConpl etion: ProcPtr; async: Bool ean): OSErr;
FUNCTI ON SndPauseFi | ePl ay (chan: SndChannel Ptr): OSErr;
FUNCTI ON SndsSt opFi | ePl ay (chan: SndChannel Ptr; qui et Now. Bool ean): OSErr;
Allocating and Releasing Sound Channels
FUNCTI ON SndNewChannel (VAR chan: SndChannel Ptr; synth: |nteger;
init: Longlnt; userRoutine: ProcPtr): OSErr;
FUNCTI ON SndDi sposeChannel (chan: SndChannel Ptr; qui et Now. Bool ean): OSErr;
Sending Commands to a Sound Channel
FUNCTI ON SndDoComrand (chan: SndChannel Ptr; cnd: SndConmmand;
noWai t: Bool ean): OSErr;
FUNCTI ON SndDol mredi at e (chan: SndChannel Ptr; cnd: SndCommand): OSErr;

Obtaining Information
FUNCTI ON SndSoundManager Ver si on
NumVer si on;

FUNCTI ON MACEVer si on NunVer si on;

FUNCTI ON SndCont r ol (id: Integer; VAR cnd: SndCommand): OSErr;

FUNCTI ON SndChannel St at us (chan: SndChannel Ptr; theLength: |nteger;
theStatus: SCStatusPtr): OSErr;

FUNCTI ON SndManager St at us (theLength: Integer; theStatus: SMstatusPtr):
CSErr;

PROCEDURE SndGet SysBeepSt at e

(VAR sysBeepSt at e:

FUNCTI ON SndSet SysBeepSt at e
(sysBeepSt at e:

2-168 Summary of the Sound Manager

I nt eger);

Integer): OSErr;

CHAPTER 2

Sound Manager

FUNCTI ON Get SoundHeader O f set
(sndHdl : Handl e; VAR offset: Longlint): OSErr;

Controlling Volume Levels

FUNCTI ON Get SysBeepVol une (VAR | evel : Longlnt): OSErr;
FUNCTI ON Set SysBeepVol une (level: Longlnt): OSErr;
FUNCTI ON Cet Def aul t Qut put Vol une

(VAR level: Longlnt): OSErr;

FUNCTI ON Set Def aul t Qut put Vol une
(level: Longlnt): OSErr;

Compressing and Expanding Audio Data

PROCEDURE Comp3t ol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);
PROCEDURE Conp6t ol (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);
PROCEDURE Explt 03 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);
PROCEDURE Explt 06 (inBuffer: Ptr; outBuffer: Ptr; cnt: Longlnt;
inState: Ptr; outState: Ptr;
nunChannel s: Longl nt; whi chChannel: Longlnt);

Managing Double Buffers

FUNCTI ON SndPl ayDoubl eBuf f er
(chan: SndChannel Ptr;
t hePar ans: SndDoubl eBuf f er HeaderPtr): OSErr;

Performing Unsigned Fixed-Point Arithmetic

FUNCTI ON Unsi gnedFi xMul Div ~ (val ue: Unsi gnedFi xed;
mul tiplier: UnsignedFi xed;
di vi sor: Unsi gnedFi xed): Unsi gnedFi xed;

Linking Modifiers to Sound Channels

FUNCTI ON SndAddModi fi er (chan: SndChannel Ptr; nodifier: ProcPktr;
id: Integer; init: Longlnt): OSErr;

Summary of the Sound Manager 2-169

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Application-Defined Routines

PROCEDURE MyFi | ePl ayConpl et i onRout i ne

(chan: SndChannel Ptr);
PROCEDURE MyCal | back (chan: SndChannel Ptr; cnd: SndComand) ;
PROCEDURE MyDoubl eBackProc (chan: SndChannel Ptr;
doubl eBuf ferPtr: SndDoubl eBufferPtr);
C Summary
Constants

/*CGestalt sound attributes sel ector

and response hits*/
/*sound attributes sel ector*/

/*built-in hw can play stereo sounds*/
/[*built-in hw m xes stereo to nono*/
/*sound input routines avail abl e*/
/*built-in input hw avail abl e*/

/*sound i nput device avail abl e*/
[*built-in hw can play while recordi ng*/
/*built-in hw can handl e 16-bit data*/
/*built-in hw can record stereo sounds*/
/*built-in input hw needs |ine |evel*/
/*play fromdisk routines avail abl e*/
/*mul tiple channel s of sound supported*/
/*16-bit audi o data supported*/

/*l eft stereo channel */
/*right stereo channel */

/ *monophoni ¢ channel */
/*stereo channel */

/*3:1 conpression*/

/*6:1 conpression*/

/*no linear interpolation*/
/*no drop-sanpl e conversi on*/

#defi ne gestalt SoundAttr ‘snd '

enum {
gestal t StereoCapability = 0,
gestal t St ereoM xi ng =1,
gest al t Soundl Ovgr Pr esent = 3,
gestal t Bui | t I nSoundl nput = 4,
gest al t HasSoundl nput Devi ce = 5,
gest al t Pl ayAndRecor d 6,
gestal t 16Bi t Soundl O 7,
gest al t St er eol nput = 8,
gest al t Li neLevel | nput =9,
gest al t SndPl ayDoubl eBuf fer = 10,
gestal t Mul ti Channel s = 11,
gest al t 16Bi t Audi oSupport = 12

1

/*channel initialization paraneters*/

enum {
i nitChanLeft = 0x0002,
i ni t ChanRi ght = 0x0003,
i ni t Mono = 0x0080,
initStereo = 0x000Q0,
i ni t MACE3 = 0x0300,
i ni t MACEG = 0x0400,
initNolnterp = 0x0004,
i ni t NoDrop = 0x0008

1

2-170 Summary of the Sound Manager

CHA

PTER 2

Sound Manager

[/ *wave channel
enum {

initialization paraneters*/

wavel ni t Channel 0 = 0x04,
wavel ni t Channel 1 = 0x05,
wavel ni t Channel 2 = 0x06,
wavel ni t Channel 3 = 0x07
wavel ni t Channel Mask = 0x07
b
/*masks for channel attributes*/
enum {
i ni t PanMask = 0x0003,
i ni t SRat eMask = 0x0030,
i nitStereoMask = 0x00Q0,
i ni t ConpMask = OxFF00
b
/*sound data types*/
enum {
squar eWaveSynt h =1,
waveTabl eSynt h = 3,
sanpl edSynt h =5
b
/*sound command nunber s*/
enum {
nul | Cnd = 0,
qui et Cd 3,
fl ushCnd = 4,
relnitCmd = b5,
wai t Crd = 10,
pauseCnd =1
resumreCmd 12,
cal | BackCnd = 13,
syncCmrd 14,
avai | abl eCnd = 24,
ver si onCnd = 25,
t ot al LoadCnd = 26,
| oadCnd = 27,
freqbDurati onCrd = 40
rest Cnd = 41,
freqCmd = 42
anpCnd = 43,

Summary of the Sound Manager

/*wave-tabl e channel 0*/
/*wave-tabl e channel 1*/
/ *wave-tabl e channel 2*/
/*wave-tabl e channel 3*/
/*mask for wave-tabl e paraneters*/

/*mask for left/right pan val ues*/
/*mask for sanple rate val ues*/
/*mask for nono/stereo val ues*/
/*mask for conpression | Ds*/

/ *squar e-wave data*/
/*wave-tabl e data*/
/ *sanpl ed- sound dat a*/

/*do not hi ng*/

/*stop a sound that is playing*/
/[*flush a sound channel */
/*reinitialize a sound channel */
/*suspend processing in a channel */
/ *pause processing in a channel */
/*resunme processing in a channel */
/*execute a cal |l back procedure*/
/*synchroni ze channel s*/

/*see if initialization options */
/* are supported*/

[*det ermi ne versi on*/

/*report total CPU | oad*/

/*report CPU | oad for a new channel */

/*play a note for a duration*/
/*rest a channel for a duration*/
/*change the pitch of a sound*/
/*change the anplitude of a sound*/

2-171

Jabeuel\ punos n

CHAPTER 2

Sound Manager

ti nmbr eCnd = 44, /*change the tinmbre of a sound*/
get AmpCnd = 45, /*get the anplitude of a sound*/
vol umreCmrd = 46, /*set vol ume*/
get Vol uneCnd = 47, /*get vol ume*/
waveTabl eCmd = 60, /*install a wave table as a voice*/
soundCnd = 80, /*install a sanpled sound as a voice*/
buf f er Cnd = 81, /*play a sanpl ed sound*/
rat eCnd = 82, /*set the pitch of a sanpled sound*/
get Rat eCnd = 85 /*get the pitch of a sanpled sound*/
1
/ *sanpl ed sound header encodi ng options*/
enum {
st dSH = 0x00, /*standard sound header*/
ext SH = OxFF, / *ext ended sound header*/
cnpSH = OxFE / *conmpr essed sound header */
b
/*size of data structures*/
enum {
stdQ.engt h = 128 /*default size of sound channel */
1
/*sound resource formats*/
enum {
firstSoundFor mat = 0x0001, /[*format 1 'snd ' resource*/
secondSoundFor mat = 0x0002 [*format 2 'snd ' resource*/
b
/*sound command nmask*/
enum {
dat a0 f set Fl ag = 0x8000 /*sound command data offset bit*/
1
/*system beep states*/
enum {
sysBeepDi sabl e = 0x0000, /*system al ert sound di sabl ed*/
sysBeepEnabl e = 0x0001 /*system al ert sound enabl ed*/
i

/*values for the unitType field in Audi oSel ection*/
enum {

uni t TypeSeconds

uni t TypeNoSel ecti on

0x0000, / *seconds*/
OxFFFF /*no sel ection*/

b

2-172 Summary of the Sound Manager

CHAPTER 2

Sound Manager

/*doubl e buffer status flags*/
enum {
dbBuf f er Ready
dbLast Buf f er

0x00000001, /*double buffer is filled*/
0x00000004 /*l ast double buffer to play*/

s

/*values for the conpressionlD field of CrpSoundHeader*/

enum {
vari abl eConpr essi on = -2, /*variable-rati o conpression*/
fi xedConpr essi on = -1, /*fixed-ratio conpression*/ 0
not Conpr essed = 0, /*nonconpr essed sanpl es*/ S
t hreeToOne = 3, /*3:1 conpressed sanpl es*/ 2
si xToOne =4 /*6:1 conpressed sanpl es*/ §

b ?

/*val ues for the packetSize field of CnpSoundHeader*/

enum {
si xXToOnePacket Si ze = 8, [*packet size in bits for 6:1*/
t hr eeToOnePacket Si ze = 16 /*packet size in bits for 3:1*/

b

[*conpr essi on nanes and types*/

#def i ne NoneNane "\ pnot conpressed"

#def i ne ACE2t olNane "\ pACE 2-to-1"

#def i ne ACE8t o3Nane "\ pACE 8-to-3"

#def i ne MACE3t o1Nane "\ pMACE 3-to-1"

#def i ne MACE6t o1Nane "\ pMACE 6-to-1"

#def i ne NoneType " NONE'

#defi ne ACE2Type " ACE2'

#def i ne ACE8Type ' ACES8'

#def i ne MACE3Type ' MAC3'

#defi ne MACE6Type " MACE'

/*1Ds for AIFF and AIFF-C fil es*/
#define Al FFID " Al FF [*AlFF file*/
#define AIFCID "Al FC [*AIFF-C file*/

/*IDs for AIFF and AlIFF-C fil e chunks*/

#defi ne FORM D ' FORM /*I D for Form Chunk*/

#defi ne Format Versi onl D ' FVER /*1D for Format Version Chunk*/
#defi ne Commonl D ' COW /*1D for Common Chunk*/

#def i ne SoundDat al D ' SSND /*I D for Sound Data Chunk*/
#define Markerl D " MARK' /*1D for Marker Chunk*/

#define InstrunmentlD "I NST' /*1D for Instrunent Chunk*/

Summary of the Sound Manager 2-173

CHAPTER 2

Sound Manager

#defi ne M DI Dat al D '"MD' /*ID for MDI Data Chunk*/
#def i ne Audi oRecordi ngl D " AESD /*1D for Recordi ng Chunk*/
#define ApplicationSpecificlD 'APPL' /*1 D for Application Chunk*/
#defi ne Comment | D ' covr! /*I D for Conment Chunk*/
#defi ne Namel D " NAVE' /*1D for Nanme Chunk*/
#define Authorl D " AUTH /*1D for Author Chunk*/
#def i ne Copyrightl D "(c) ' /*1 D for Copyright Chunk*/
#defi ne AnnotationlD " ANNO /*1D for Annotation Chunk*/

/*version of AIFC format specification*/
#defi ne Al FCVer si onl 0xA2805140
/*date of version creation*/

/*M DI note value for mddle C/
enum {
kM ddl eC = 60

s

/*ratio between frequencies of MD note val ues*/
#defi ne twel ft hRoot Two 1. 05946309434

/*standard sanpling rates*/

#def i ne rat e44khz O0xAC440000 /*44100. 00000 in fixed-point*/
#def i ne rate22khz Ox56EE8BA3 [*22254. 54545 in fixed-point*/
#def i ne rat e22050hz 0x56220000 /*22050. 00000 i n fixed-point*/
#define ratellkhz 0x2B7745D1 [*11127. 27273 in fixed-point*/
#defi ne ratell025hz 0x2B110000 /*11025. 00000 i n fixed-point*/

/*constant for synth paraneter of SndNewChannel */
enum {
kUseOpt i onal CQut put Devi ce =-1

b

/*vol umes*/

enum {
kFul | Vol une
kNoVol une

0x0100,
0

s

/ *devel opment st ages*/
enum {

devel opSt age

al phaSt age

0x20, / *preal pha rel ease*/
0x40, /*al pha rel ease*/

2-174 Summary of the Sound Manager

CHAPTER 2

Sound Manager

bet aSt age = 0x60, /*beta rel ease*/
final St age = 0x80 /*final rel ease*/
b
/*sizes of data buffers*/
enum {
st at eBl ockSi ze = 64, /*size of state bl ock buffer*/
| eft Over Bl ockSi ze = 32 /*size of leftover block buffer*/ o
b
%)
2
Data Types 2
<
Q
=)
&
@

Unsigned Fixed-Point Numbers

t ypedef unsigned | ong Unsi gnedFi xed; / *unsi gned fixed-poi nt nunber*/

Times

typedef |ong Tine; /*in half-mlliseconds*/

Sound Command Record

struct SndCommand {

unsi gned short cnd; /*command nunber */
short par aml; [*first paramneter*/
| ong par ang; /*second paraneter*/

1
typedef struct SndCommand SndCommand,

Audio Selection Record

struct Audi oSel ection {

| ong uni t Type; /*type of time unit*/
Fi xed sel Start; /*starting point of selection*/
Fi xed sel End; /*endi ng point of selection/*

b
typedef struct Audi oSel ection Audi oSel ecti on
t ypedef Audi oSel ecti on *Audi oSel ectionPtr

Summary of the Sound Manager 2-175

CHAPTER 2

Sound Manager

Sound Channel Status Record

struct SCStatus {

/*starting time for play from disk*/
/*ending time for play from disk*/
/*current time for play from di sk*/
/*TRUE i f channel is processing cnds*/

[*reserved*/

/[*TRUE if play fromdisk is paused*/

Fi xed scStartTi ne;

Fi xed scEndTi ne;

Fi xed scCurrent Ti ne;
Bool ean scChannel Busy;
Bool ean scChannel Di sposed,;
Bool ean scChannel Paused;
Bool ean scUnused;

unsi gned | ong

| ong scCPULoad,;
b
typedef struct SCStatus SCStat us;

t ypedef SCStatus *SCStatusPtr

Sound Manager Status Record

struct SMstatus {

short smivaxCPULoad
short smNuntChannel s;
short smCur CPULoad;

b
typedef struct SMstatus SMstatus;
t ypedef SMstatus *SMstatusPtr

Sound Channel Record

struct SndChannel {

/ *unused*/

scChannel Attri but es;

/*attributes of this channel */
/*CPU | oad for this channel */

/*maxi mum | oad on all channel s*/
/ *nunber of allocated channel s*/
/*current |load on all channel s*/

struct SndChannel *next Chan; /*poi nter to next channel */
Ptr firstMd; /*used internally*/
SndCal | BackProcPtr cal | Back; /*pointer to call back procedure*/
| ong user | nf o; /*free for application's use*/
| ong wai t; /*used internally*/
SndCommrand cndl nProgress; /*used internally*/
short fl ags; /*used internally*/
short gLengt h; /*used internally*/
short gHead; /*used internally*/
short gTail ; /*used internally*/
SndCommrand gueue[st dQLengt h] ;
2-176 Summary of the Sound Manager

CHAPTER 2

Sound Manager

1
typedef struct SndChannel SndChannel
t ypedef SndChannel *SndChannel Ptr

Sound Header Record

struct SoundHeader {

Ptr sanpl ePtr; /*if NL, sanples in sanmpl eArea*/
unsi gned | ong | engt h; /*nunber of sanples in array*/

Fi xed sanpl eRat e; /*sanple rate for this sound*/ @
unsi gned | ong | oopStart; /*1 oop point begi nni ng*/ g
unsi gned | ong | oopENd; /*1 oop point ending*/ §
unsi gned char encode; /*sanpl e' s encodi ng option*/ 3
unsi gned char baseFrequency; /*base frequency of sanpl e*/ 8
unsi gned char sampl eAreal 1] ;

b
t ypedef struct SoundHeader SoundHeader
typedef SoundHeader *SoundHeader Ptr

Extended Sound Header Record

struct Ext SoundHeader {

Ptr sanpl ePtr; /*if NL, sanples in sanmpl eArea*/
unsi gned | ong nuntChannel s; /*nunber of channels in sanple*/
Fi xed sanpl eRat e; /*rate of original sanple*/
unsi gned | ong | oopStart; /*1 oop point begi nni ng*/
unsi gned | ong | oopENd; /*1 oop poi nt ending*/
unsi gned char encode; /*sanpl e' s encodi ng option*/
unsi gned char baseFrequency; /*base frequency of sanple*/
unsi gned | ong nunfr anes; /*total nunber of franes*/
ext ended80 Al FFSanmpl eRate; / *rate of original sanple*/
Ptr mar ker Chunk; [*reserved*/
Ptr i nstrument Chunks;

/[*pointer to instrunment info*/
Ptr AESRecording; /*pointer to audio info*/
unsi gned short sanpl eSi ze; /*nunber of bits per sanple*/
unsi gned short futureUsel,; /*reserved*/
unsi gned | ong futureUse2; [*reserved*/
unsi gned | ong futureUses3; /*reserved*/
unsi gned | ong fut ureUse4; /*reserved*/
unsi gned char sanmpl eArea[1];

i
typedef struct Ext SoundHeader Ext SoundHeader
t ypedef Ext SoundHeader *Ext SoundHeader Ptr

Summary of the Sound Manager 2-177

CHAPTER 2

Sound Manager

Compressed Sound Header Record

struct CnpSoundHeader ({

Ptr sanpl ePtr; /*if NIL, sanples in sanpl eArea*/
unsi gned | ong nunChannel s; [*nunber of channels in sanmple*/
Fi xed sanpl eRat e; /*rate of original sanple*/
unsi gned | ong | oopStart; /*1 oop poi nt begi nni ng*/
unsi gned | ong | oopENd; /*1 oop point endi ng*/
unsi gned char encode; /*sanpl e' s encodi ng option*/
unsi gned char baseFrequency; /*base frequency of original sanple*/
unsi gned | ong nunfFr anes; /*1length of sanmple in frames*/
ext ended80 Al FFSanpl eRate; /*rate of original sanple*/
Ptr mar ker Chunk; /*reserved*/
OSType format; /*data format type*/
unsi gned | ong futureUse2; /*reserved*/
St at eBl ockPtr st at eVars; /*pointer to StateBl ock*/
Left Over Bl ockPtr | ef t Over Sanpl es;

/*pointer to LeftQverBl ock*/
unsi gned short conpressionl D; /*1 D of conpression algorithnt/
unsi gned short packet Si ze; [*nunber of bits per packet*/
unsi gned short snt hl D; / *unused*/
unsi gned short sanpl eSi ze; /*bits in each sanple point*/
unsi gned char sanmpl eArea[1];

1
typedef struct CnpSoundHeader CnpSoundHeader
t ypedef CnpSoundHeader *CnpSoundHeader Ptr

Sound Double Buffer Header Record

struct SndDoubl eBuf f er Header {

short dbhNunmChannel s; / *nunber of sound channel s*/
short dbhSampl eSi ze; /*sanple size, if nonconpressed*/
short dbhConpr essi onl D

/*1 D of conpression algorithnr/
short dbhPacket Si ze; /*nunber of bits per packet*/
Fi xed dbhSanpl eRate; /*sanple rate*/

SndDoubl eBuf ferPtr dbhBufferpbtr[2];
/*pointers to SndDoubl eBuf fer*/
SndDoubl eBackProcPtr dbhDoubl eBack; /*pointer to doubl eback procedure*/
1
typedef struct SndDoubl eBuf f er Header SndDoubl eBuf f er Header
t ypedef SndDoubl eBuf f er Header *SndDoubl eBuf f er Header Pt r

2-178 Summary of the Sound Manager

CHAPTER 2

Sound Manager

struct SndDoubl eBuf f er Header 2 {

short dbhNuntChannel s; / *nunmber of sound channel s*/
short dbhSanmpl eSi ze; /*sanple size, if nonconpressed*/
short dbhConpr essi onl D

/*1 D of conpression algorithm/
short dbhPacket Si ze; /*nunmber of bits per packet*/
Fi xed dbhSanpl eRate; /*sanple rate*/

SndDoubl eBuf ferPtr dbhBufferPtr[2];
/*poi nters to SndDoubl eBuf f er*/
SndDoubl eBackProcPtr dbhDoubl eBack; /*pointer to doubl eback procedure*/
OSType dbhFor mat ; /*signature of codec*/
1
t ypedef struct SndDoubl eBuf f er Header 2 SndDoubl eBuf f er Header 2;
t ypedef SndDoubl eBuf f er Header 2 * SndDoubl eBuf f er Header Pt r 2;

Sound Double Buffer Record

struct SndDoubl eBuffer {

| ong dbNunfr anes; /*nunber of frames in buffer*/
| ong dbFl ags; /*buffer status flags*/

| ong dbUserinfo[2]; /*for application' s use*/

char dbSoundDat a[1] ;/ *array of data*/

1
typedef struct SndDoubl eBuffer SndDoubl eBuf fer
t ypedef SndDoubl eBuffer *SndDoubl eBufferpPtr

Chunk Headers

t ypedef unsigned | ong ID; /*chunk 1D type*/

struct ChunkHeader {

I D ckl D /*chunk type | D*/
| ong ckSi ze; /*nunber of bytes of data*/
1
t ypedef struct ChunkHeader ChunkHeader
Form Chunk
struct Cont ai ner Chunk {
I D ckl b [*'" FORM */
| ong ckSi ze; [*nunmber of bytes of data*/
I D f or nType; [*type of file*/

b
typedef struct Contai ner Chunk Cont ai ner Chunk

Summary of the Sound Manager 2-179

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Format Version Chunk

/*date of format version*/

struct For mat Ver si onChunk {
ID ckl Dy /*' FVER */
| ong ckSi ze; [*4 bytes*/
unsi gned | ong ti mest anp;

b
t ypedef struct

Common Chunk

struct CommonChunk {
ID
| ong
short
unsi gned | ong

short
ext ended80

b

ckl D
ckSi ze;
nunthannel s; [*numnber
nunSanpl eFr anes;

/ *nunber
[*nunber
/ *nunber

sanpl eSi ze;
sanpl eRat e;

typedef struct ConmonChunk ComobnChunk

Extended Common Chunk

struct
I D
| ong
short
unsi gned | ong

Ext ConmonChunk {

short
ext ended80
(D)

char

1
t ypedef struct

2-180

ckl D
ckSi ze;
nunmChannel s; / * nunber
nunSanpl eFr anmes;

[*number
sanpl eSi ze; / *nunber
sanpl eRat e; / * number
conpr essi onType;

For mat Ver si onChunk For mat Ver si onChunk;

/*' COW */
/*18 bytes*/

of channel s*/

of sample frames*/
of bits per sanple*/
of frames per second*/

/*' COWM */
[*22 bytes + conpression name*/

of channel s*/

of sanple frames*/
of bits per sanple*/
of frames per second*/

/*conpression type | D/

conpr essi onNane[1] ;

/*conpressi on type nane*/

Ext CommpbnChunk Ext ConmonChunk

Summary of the Sound Manager

CHAPTER 2

Sound Manager

Sound Data Chunk

struct SoundDat aChunk {

I D ckl D [*' SSND' */

| ong ckSi ze; /*size of chunk data*/

unsi gned | ong of fset; /*of fset to sound data*/
unsi gned | ong bl ockSi ze; /*size of alignnment bl ocks*/

1
t ypedef struct SoundDat aChunk SoundDat aChunk

Version Record

struct NunVersion {

unsi gned char maj or Rev; /*maj or revision level in BCD*/

unsi gned char m nor AndBugRev; / *mi nor revision |evel*/

unsi gned char st age; / *devel opnent stage*/

unsi gned char nonRel Rev; /*nonrel eased version revision | evel */

b

typedef struct NunVersion NunVersion

Leftover Block

struct LeftOverBl ock {
unsi gned | ong count ;
char sanpl eArea[| eft Over Bl ockSi ze] ;
i
typedef struct LeftOverBl ock LeftOverBl ock
t ypedef LeftOverBl ock *Left OverBl ockPtr

State Block

struct StateBl ock {
short st at eVar [st at eBl ockSi ze] ;

1
typedef struct StateBl ock StateBl ock
typedef StateBlock *StateBl ockPtr

Procedure Types

t ypedef pascal void (*Fil ePl ayConpl eti onProcPtr)
(SndChannel Ptr chan);

typedef pascal void (*SndCal | BackProcPtr)
(SndChannel Ptr chan, SndConmand *cnd);

Summary of the Sound Manager 2-181

Jabeuel\ punos n

CHAPTER 2

Sound Manager

t ypedef pascal void (*SndDoubl eBackProcPtr)
(SndChannel Ptr chan,
SndDoubl eBuf fer Pt r doubl eBufferPtr);

Sound Manager Routines

Playing Sound Resources

pascal void SysBeep (short duration);

pascal OSErr SndPl ay (SndChannel Ptr chan, Handl e sndHdl ,
Bool ean async);

Playing From Disk

pascal OSErr SndStartFil ePl ay
(SndChannel Ptr chan, short fRef Num
short resNum |ong bufferSize, void *theBuffer,
Audi oSel ectionPtr theSel ecti on,
Fi | ePl ayConpl eti onProcPtr theConpl etion,
Bool ean async);

pascal OSErr SndPauseFil ePl ay
(SndChannel Ptr chan);

pascal OSErr SndStopFil ePl ay
(SndChannel Ptr chan, Bool ean qui et Now) ;

Allocating and Releasing Sound Channels

pascal OSErr SndNewChannel (SndChannel Ptr *chan, short synth, long init,
SndCal | BackProcPtr userRouti ne);

pascal OSErr SndD sposeChannel
(SndChannel Ptr chan, Bool ean qui et Now) ;

Sending Commands to a Sound Channel

pascal OSErr SndDoCommand (SndChannel Ptr chan, const SndCommand *cnd,
Bool ean noWit);

pascal OSErr SndDol nmmedi at e
(SndChannel Ptr chan, const SndCommand *cnd);

Obtaining Information

pascal NumVer si on SndSoundManager Ver si on
(void);
pascal NunVersi on MACEVersi on
(void);

2-182 Summary of the Sound Manager

CHAPTER 2

Sound Manager

pascal OSErr SndControl (short id, SndConmand *cnd);

pascal OSErr SndChannel St at us
(SndChannel Ptr chan, short thelLength,
SCSt at usPtr theStatus);

pascal OSErr SndManager St at us
(short theLength, SMstatusPtr theStatus);

pascal void SndGet SysBeepSt at e
(short *sysBeepState);

pascal OSErr SndSet SysBeepSt at e
(short sysBeepState);

pascal OSErr Get SoundHeader O f set
(Handl e sndHandl e, | ong *of fset);

Controlling Volume Levels

pascal OSErr Get SysBeepVol une

(long *level);
pascal OSErr Set SysBeepVol une

(long level);

pascal OSErr Get Def aul t Qut put Vol une
(long *level);

pascal OSErr Set Def aul t Qut put Vol une
(long level);

Compressing and Expanding Audio Data

pascal void Conmp3tol (const void *inBuffer, void *outBuffer
unsi gned long cnt, const void *inState,
voi d *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Conmp6tol (const void *inBuffer, void *outBuffer
unsi gned long cnt, const void *inState,
void *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Explto3 (const void *inBuffer, void *outBuffer
unsi gned |l ong cnt, const void *inState,
void *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

pascal void Explto6 (const void *inBuffer, void *outBuffer
unsi gned |l ong cnt, const void *inState,
voi d *out State, unsigned | ong nunChannel s,
unsi gned | ong whi chChannel) ;

Summary of the Sound Manager 2-183

Jabeuel\ punos n

CHAPTER 2

Sound Manager

Managing Double Buffers

pascal OSErr SndPl ayDoubl eBuf f er
(SndChannel Ptr chan,
SndDoubl eBuf f er Header Pt r t hePar ans) ;

Performing Unsigned Fixed-Point Arithmetic

pascal Unsi gnedFi xed Unsi gnedFi xMul Di v
(Unsi gnedFi xed val ue, Unsi gnedFi xed nul tiplier,
Unsi gnedFi xed di vi sor);

Linking Modifiers to Sound Channels

pascal OSErr SndAddModi fi er
(SndChannel Ptr chan, Ptr nodifier, short id,
long init);

Application-Defined Routines

pascal void MyFil ePl ayConpl eti onRouti ne
(SndChannel Ptr chan);

pascal void MyCal |l back (SndChannel Ptr chan, SndConmand *cnd);

pascal void MyDoubl eBackProc
(SndChannel Ptr chan,
SndDoubl eBuf f er Pt r doubl eBuf ferPtr);

Assembly-Language Summary

Data Structures

SndCommand Data Structure

0 cmd word command number
2 par aml word first parameter
4 par an long second parameter

AudioSelection Data Structure

0 uni t Type long type of time unit
4 selStart 4 bytes starting point of selection (Fixed)
8 sel End 4 bytes ending point of selection (Fixed)

2-184 Summary of the Sound Manager

CHAPTER 2

Sound Manager

SCStatus Data Structure

0
4
8
12
13
14
15
16
20

scStartTi e
scEndTi ne
scCurrent Ti ne
scChannel Busy
scChannel Di sposed
scChannel Paused
scUnused
scChannel Attri butes
scCPULoad

SMStatus Data Structure

0
2
4

smvaxCPULoad
smNunmChannel s
smCur CPULoad

SndChannel Data Structure

0

4

8
12
16
20
28
30
32
34
36

next Chan
firsthMd
cal | Back
userinfo
wai t

cmdl nProgr ess
flags
gLengt h
gHead
gTai
queue

SoundHeader Data Structure

0
4
8
12
16
20
21
22

4 bytes starting time for play from disk (Fixed)
4 bytes ending time for play from disk (Fixed)
4 bytes current time for play from disk (Fixed)
byte channel playing sampled sound flag
byte reserved

byte play from disk is paused flag

byte unused

long attributes of channel

long CPU load for channel

word maximum load on all channels

word number of allocated channels

word current load on all channels

long pointer to next channel

long used internally

long pointer to callback procedure

long free for application’s use

long used internally

8 bytes used internally

word used internally

word used internally

word used internally

word used internally

variable queue of sound commands

sanpl ePt r long
l ength long
sanpl eRat e 4 bytes
| oopSt art long
| oopEnd long
encode byte
baseFr equency byte
sampl eAr ea variable

ExtSoundHeader Data Structure

0

4
8
12
16

sanpl ePtr

numChannel s
sanpl eRat e
| oopStart

| oopEnd

long

long
4 bytes
long
long

pointer to samples (or NI L if samples follow data structure)
number of samples in array

sample rate (Fixed)

loop point beginning

loop point ending

sample’s encoding option

base frequency of sample

sampled-sound data

pointer to samples (or NI L if samples follow data
structure)

number of channels in sample

sample rate (Fixed)

loop point beginning

loop point ending

Summary of the Sound Manager 2-185

Jabeuel\ punos n

CHAPTER 2

Sound Manager

20 encode byte sample’s encoding option
21 baseFr equency byte base frequency of sample
22 nunfr anes long total number of frames

26 Al FFSanpl eRat e 10 bytes rate of original sample (Extended80)
36 mar ker Chunk long reserved

40 i nst rument Chunks long pointer to instrument info
44 AESRecor di ng long pointer to audio info

48 sanpl eSi ze word number of bits per sample
50 futureUsel word reserved

52 futureUse2 long reserved

56 futureUse3 long reserved

60 futureUse4 long reserved

64 sanpl eAr ea variable sampled-sound data

CmpSoundHeader Data Structure

0 sanplePtr long pointer to samples (or NI L if samples follow data
structure)
4 nunChannel s long number of channels in sample
8 sanpleRate 4 bytes sample rate (Fixed)
12 | oopSt art long loop point beginning
16 | oopEnd long loop point ending
20 encode byte sample’s encoding option
21 baseFr equency byte base frequency of original sample
22 nunframes long length of sample in frames
26 Al FFSanpl eRat e 10 bytes rate of original sample (Extended80)
36 mar ker Chunk long reserved
40 f or mat OSType data format type
44 futureUse2 long reserved
48 stateVars long pointer to St at eBl ock
52 | ef t Over Sanpl es long pointer to Lef t Over Bl ock
56 conpressionl D word ID of compression algorithm
58 packet Si ze word number of bits per packet
60 snthiD word unused
62 sanpl eSi ze word bits in each sample point
64 sanpl eAr ea variable compressed sound data

SndDoubleBufferHeader Data Structure

0 dbhNunChannel s word number of sound channels

2 dbhSanpl eSi ze word sample size, if noncompressed

4 dbhConpressionlD word ID of compression algorithm

6 dbhPacket Si ze word number of bits per packet

8 dbhSanpl eRat e 4 bytes sample rate (Fixed)
12 dbhBuf ferPtr 2 longs pointers to SndDoubl eBuf f er data structures
20 dbhDoubl eBack long pointer to doubleback procedure

2-186 Summary of the Sound Manager

CHAPTER 2

Sound Manager

SndDoubleBuffer Data Structure

0 dbNunfr anes long

4 dbFl ags long

8 dbUser I nfo 2 longs
16 dbSoundDat a variable

ChunkHeader Data Structure

0 ckl D long
4 ckSi ze long

ContainerChunk Data Structure

0 ckl D long
4 ckSi ze long
8 f or nilype long

FormatVersionChunk Data Structure

0 ckiD long
4 ckSi ze long
8 timestanp long

CommonChunk Data Structure

0 ckl D long
4 ckSi ze long
8 nunChannel s word
10 nunBanpl eFr anes long
14 sampl eSi ze word
16 sampl eRat e

ExtCommonChunk Data Structure

0 ckl D long
4 ckSi ze long

8 numChannel s word
10 nunBanpl eFr ames long
14 sanpl eSi ze word
16 sanpl eRat e
26 conpressi onType long

30 conpr essi onNane variable
SoundDataChunk

0 ckl D long

4 ckSi ze long

8 of f set long

12 bl ockSi ze long

Summary of the Sound Manager

10 bytes

10 bytes

number of frames in buffer
buffer status flags

for application’s use

array of data

chunk type ID
number of bytes of data

chunk type ID (" FORM)
number of bytes of data
type of file

chunk type ID (' FVER)
number of bytes of data (4)
date of format version

chunk type ID (' COMM)

number of bytes of data (18)

number of channels

number of sample frames

number of bits per sample

number of frames per second (Extended80)

chunk type ID (" COW)

number of bytes of data (22 + length of compression
name)

number of channels

number of sample frames

number of bits per sample

number of frames per second (Extended80)
compression type ID

compression type name

chunk type ID (* SSND')
number of bytes of data
offset to sound data

size of alignment blocks

2-187

Jabeuel\ punos n

Trap Macros

CHAPTER 2

Sound Manager

Trap Macro Requiring Routine Selectors

_SoundDi spat ch

Selector Routine

$00000010 MACEVer si on

$00040010 Comp3tol

$00080010 Explt o3

$000C0008 SndSoundManager Ver si on
$000C0010 Conmp6t ol

$00100008 SndChannel St at us
$00100010 Explt 06

$00140008 SndManager St at us
$00180008 SndCet SysBeepSt at e
$001C0008 SndSet SysBeepSt at e
$00200008 SndPl ayDoubl eBuf f er
$02040008 SndPauseFi | ePl ay
$02240024 CGet SysBeepVol une
$02280024 Set SysBeepVol une
$022C0024 Get Def aul t Qut put Vol une
$02300024 Set Def aul t Qut put Vol une
$03080008 SndSt opFi | ePl ay
$0D000008 SndStart Fi | ePl ay
$04040024 Get SoundHeader O f set

Result Codes

noErr 0 No error

parantrr -50 A parameter is incorrect

noHar dwar eEr r -200 Required sound hardware not available
not EnoughHar dwar eEr r -201 Insufficient hardware available
queueFul | -203 No room in the queue

resProbl em -204 Problem loading the resource
badChannel —205 Channel is corrupt or unusable

badFor mat —206 Resource is corrupt or unusable

not EnoughBuf f er Space -207 Insufficient memory available

badFi | eFor mat —208 File is corrupt or unusable, or not AIFF or AIFF-C
channel Busy -209 Channel is busy

buf f er sTooSnal | -210 Buffer is too small

2-188

Summary of the Sound Manager

CHAPTER 2

Sound Manager

channel Not Busy =211 Channel not currently used
noMor eReal Ti ne -212 Not enough CPU time available
si | nval i dConpr essi on -223 Invalid compression type

Jabeuel\ punos n

Summary of the Sound Manager 2-189

	 Title
	 Copyright
	 Table of Contents
	 Figures, Tables, and Listings
	 Preface
	 Introduction to Sound TOC
	 Introduction to Sound
	 Sound Manager TOC
	Sound Manager
	About the Sound Manager
	Sound Data
	Square-Wave Data
	Wave-Table Data
	Sampled-Sound Data

	Sound Commands
	Sound Channels
	Sound Compression and Expansion

	Using the Sound Manager
	Managing Sound Channels
	Allocating Sound Channels
	Initializing Sound Channels
	Releasing Sound Channels
	Manipulating a Sound That Is Playing
	Stopping Sound Channels
	Pausing and Restarting Sound Channels
	Synchronizing Sound Channels

	Managing Sound Volumes
	Obtaining Sound-Related Information
	Obtaining Information About Available Sound Featur...
	Obtaining Version Information
	Testing for Multichannel Sound and Play-From-Disk ...
	Obtaining Information About a Single Sound Channel...
	Obtaining Information About All Sound Channels
	Determining and Changing the Status of the System ...

	Playing Notes
	Installing Voices Into Channels
	Looping a Sound Indefinitely

	Playing Sounds Asynchronously
	Using Callback Procedures
	Synchronizing Sound With Other Actions
	Managing an Asynchronous Play From Disk
	Playing Selections
	Managing Multiple Sound Channels

	Parsing Sound Resources and Sound Files
	Obtaining a Pointer to a Sound Header
	Playing Sounds Using Low-Level Routines
	Finding a Chunk in a Sound File

	Compressing and Expanding Sounds
	Using Double Buffers
	Setting Up Double Buffers
	Writing a Doubleback Procedure

	Sound Storage Formats
	Sound Resources
	The Format 1 Sound Resource
	The Format 2 Sound Resource

	Sound Files
	Chunk Organization and Data Types
	The Form Chunk
	The Format Version Chunk
	The Common Chunk
	The Sound Data Chunk
	Format of Entire Sound Files

	Sound Manager Reference
	Constants
	Gestalt Selector and Response Bits
	Channel Initialization Parameters
	Sound Command Numbers
	Chunk IDs

	Data Structures
	Sound Command Records
	Audio Selection Records
	Sound Channel Status Records
	Sound Manager Status Records
	Sound Channel Records
	Sound Header Records
	Extended Sound Header Records
	Compressed Sound Header Records
	Sound Double Buffer Header Records
	Sound Double Buffer Records
	Chunk Headers
	Form Chunks
	Format Version Chunks
	Common Chunks
	Extended Common Chunks
	Sound Data Chunks
	Version Records
	Leftover Blocks
	State Blocks

	Sound Manager Routines
	Playing Sound Resources
	Playing From Disk
	Allocating and Releasing Sound Channels
	Sending Commands to a Sound Channel
	Obtaining Information
	Controlling Volume Levels
	Compressing and Expanding Audio Data
	Managing Double Buffers
	Performing Unsigned Fixed-Point Arithmetic
	Linking Modifiers to Sound Channels

	Application-Defined Routines
	Completion Routines
	Callback Procedures
	Doubleback Procedures

	Resources
	The Sound Resource

	Summary of the Sound Manager
	Pascal Summary
	Constants
	Data Types
	Sound Manager Routines
	Application-Defined Routines

	C Summary
	Constants
	Data Types
	Sound Manager Routines
	Application-Defined Routines

	Assembly-Language Summary
	Data Structures
	Trap Macros

	Result Codes

	 Sound Input Manager TOC
	 Sound Input Manager
	 Speech Manager TOC
	 Speech Manager
	 Sound Components TOC
	 Sound Components
	 Audio Components TOC
	 Audio Components
	 Glossary
	 Index
	 Colophon

